2 research outputs found

    Comparison of atmospheric aerosol optical depths measured with different sun photometers in three regions of Spitsbergen Archipelago

    Get PDF
    Results of multiyear (2011-2017) aerosol monitoring were used to compare the spectral aerosol optical depths (AOD) of the atmosphere, measured with different sun photometers at three Arctic stations on Spitsbergen Archipelago: Hornsund, Barentsburg, Ny-Ã…lesund. In addition to agreement of data in three regions, we also found that AOD in Barentsburg slightly (comparable to error) exceeds those from other stations located 110-120 km away. The AOD discrepancy is more pronounced in the shortwave part of the spectrum, indicating more abundant fine-mode aerosol in Barentsburg

    Spatial Distribution of Black Carbon Concentrations in the Atmosphere of the North Atlantic and the European Sector of the Arctic Ocean

    No full text
    We discuss the measurements of black carbon concentrations in the composition of atmospheric aerosol over the seas of the North Atlantic and European sector of the Arctic Ocean (21 expeditions in 2007–2020). The black carbon concentrations were measured by an aethalometer and filter method. The comparison of the two variants of the measurements of the black carbon concentrations showed that the data acceptably agreed and can be used jointly. It is noted that the spatial distribution of black carbon over the ocean is formed under the influence of outflows of air masses from the direction of continents, where the main sources of emission of absorbing aerosol are concentrated. We analyzed the statistical characteristics of black carbon concentrations in five marine regions, differing by the outflows of continental aerosol. The largest black carbon content is a salient feature of the atmosphere of the North and Baltic Seas, surrounded by land: average values of concentrations are 210 ng/m3, and modal values are 75 ng/m3. In other regions (except in the south of the Barents Sea), the average black carbon concentrations are 37–44 ng/m3 (modal concentrations are 18–26 ng/m3). We discuss the specific features of the spatial (latitude-longitude) distributions of black carbon concentrations, relying on ship-based measurements and model calculations (MERRA-2 reanalysis data). A common regularity of the experimental and model spatial distributions of black carbon is that the concentrations decrease in the northern direction and with the growing distance from the continent: from several hundred ng/m3 in the southern part of the North Sea to values below 50 ng/m3 in polar regions of the ocean
    corecore