328 research outputs found

    Anderson localization casts clouds over adiabatic quantum optimization

    Full text link
    Understanding NP-complete problems is a central topic in computer science. This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer's Hamiltonian. We show that the statistics of the gaps can be analyzed in a novel way, borrowed from the study of quantum disordered systems in statistical mechanics. It turns out that due to a phenomenon similar to Anderson localization, exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. This implies that unfortunately, adiabatic quantum optimization fails: the system gets trapped in one of the numerous local minima.Comment: 14 pages, 4 figure

    Continuous-variable entanglement distillation over a pure loss channel with multiple quantum scissors

    Full text link
    Entanglement distillation is a key primitive for distributing high-quality entanglement between remote locations. Probabilistic noiseless linear amplification based on the quantum scissors is a candidate for entanglement distillation from noisy continuous-variable (CV) entangled states. Being a non-Gaussian operation, quantum scissors is challenging to analyze. We present a derivation of the non-Gaussian state heralded by multiple quantum scissors in a pure loss channel with two-mode squeezed vacuum input. We choose the reverse coherent information (RCI)---a proven lower bound on the distillable entanglement of a quantum state under one-way local operations and classical communication (LOCC), as our figure of merit. We evaluate a Gaussian lower bound on the RCI of the heralded state. We show that it can exceed the unlimited two-way LOCCassisted direct transmission entanglement distillation capacity of the pure loss channel. The optimal heralded Gaussian RCI with two quantum scissors is found to be significantly more than that with a single quantum scissors, albeit at the cost of decreased success probability. Our results fortify the possibility of a quantum repeater scheme for CV quantum states using the quantum scissors.Comment: accepted for publication in Physical Review

    Coherent Communication with Continuous Quantum Variables

    Get PDF
    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.Comment: 4 pages, 3 figure
    corecore