19 research outputs found

    Potential asphyxia and brainstem abnormalities in sudden and unexpected death in infants

    No full text
    Objective: Sudden and unexplained death is a leading cause of infant mortality. Certain characteristics of the sleep environment increase the risk for sleep-related sudden and unexplained infant death. These characteristics have the potential to generate asphyxial conditions. We tested the hypothesis that infants may be exposed to differing degrees of asphyxia in sleep environments, such that vulnerable infants with a severe underlying brainstem deficiency in serotonergic, γ-aminobutyric acid-ergic, or 14-3-3 transduction proteins succumb even without asphyxial triggers (e.g., supine), whereas infants with intermediate or borderline brainstem deficiencies require asphyxial stressors to precipitate death. Methods: We classified cases of sudden infant death into categories relative to a "potential asphyxia" schema in a cohort autopsied at the San Diego County Medical Examiner's Office. Controls were infants who died with known causes of death established at autopsy. Analysis of covariance tested for differences between groups. Results: Medullary neurochemical abnormalities were present in both infants dying suddenly in circumstances consistent with asphyxia and infants dying suddenly without obvious asphyxia-generating circumstances. There were no differences in the mean neurochemical measures between these 2 groups, although mean measures were both significantly lower (P < .05) than those of controls dying of known causes. Conclusions: We found no direct relationship between the presence of potentially asphyxia conditions in the sleep environment and brainstem abnormalities in infants dying suddenly and unexpectedly. Brainstem abnormalities were associated with both asphyxia-generating and non-asphyxia generating conditions. Heeding safe sleep messages is essential for all infants, especially given our current inability to detect underlying vulnerabilities.Bradley B. Randall, David S. Paterson, Elisabeth A. Haas, Kevin G. Broadbelt, Jhodie R. Duncan, Othon J. Mena, Henry F. Krous, Felicia L. Trachtenberg and Hannah C. Kinne

    TIMP-1 is a key factor of fibrogenic response to bleomycin in mouse lung.

    No full text
    International audiencePulmonary fibrosis is characterized by the excessive deposition of extracellular matrix in the interstitium, resulting in respiratory failure. The role of remodeling mediators such as metalloproteinases (MMPs) and their inhibitors (TIMPs) in the fibrogenic process remains misunderstood. We investigated MMP-9, MMP-2, TIMP-1, TIMP-2 and TIMP-3 in the fibrotic response to bleomycin of fibrosis prone C57BL/6J and fibrosis resistant BALB/c mice. Mice were administered with 0.1 mg bleomycin by intranasal administration. Either 24 h or 14 days after, the mice were anesthetized and underwent either bronchoalveolear lavage (BAL) or lung removal. Collagen deposition in lung tissue was determined by hydroxyproline measurement, MMP activity was analyzed by zymography, and other mediators were analyzed by ELISA. TIMP-1 was localized in lung sections by immunohistochemistry and real time PCR was performed to gene expression in lung. Non parametric Mann-Whitney and Spearman tests were used for statistical analysis. Fourteen days after bleomycin administration, hydroxyproline assay and histological study revealed that BALB/c mice developed significantly less fibrosis compared to C57BL/6J mice. At day 1, bleomycin enhanced TIMP-1, MMP-2 and MMP-9 protein levels in BALF, and induced corresponding genes in lung tissue of both strains. The rise of Timp-1, Mmp-9 and Mmp-2 gene levels were significantly stronger in lungs of C57BL/6J, whereas gelatinase activities of MMP-2 and MMP-9 were similar. Immunohistochemistry revealed that TIMP-1 macrophages and epithelial cells were prominent TIMP-1 producers in both strains. At day 14, neither MMP-2 nor MMP-9 levels exhibited strain-dependent protein level or gene expression, although TIMP-1 was strongly associated with fibrosis. Interestingly, bleomycin induced neither Timp-2 nor Timp-3 in lung tissue at any time of the study. The present study shows that early altered regulation of TIMP-1 following bleomycin administration may be involved in bleomycin-induced pulmonary fibrosis

    Pediatric forensic pathology in evolution

    No full text
    Pediatric forensic pathology has been under considerable scrutiny in recent years with a number of significant issues being raised concerning the quality and application of this subspecialized area. Considering the relatively small numbers of pediatric cases that are seen in medicolegal practice, the area unfortunately attracts more than its share of public and professional attention and criticism. Although easy to define (it is the study of injury and disease in children and its application to the law), problems have arisen in determining how pediatric forensic pathology should be taught, certified, and practiced. Despite a number of positive developments occurring, with formal inquiries into practices and the formulation of recommendations and protocols, it is still unclear what constitutes a pediatric forensic pathologist; for example; is it an adult forensic pathologist who has an interest in pediatric cases, or should the term be restricted to a board certified pediatric pathologist who undertakes forensic work? Alternatively, should pediatric forensic pathology be a separate subspeciality with its own examinations and standards?Roger W. Byar
    corecore