4 research outputs found

    Small Wind Turbines: Specification, Design, and Economic Evaluation

    Get PDF
    In this work, we consider various aspects of small wind turbines’ (SWTs) design and operation. First, an extensive literature study is presented by considering SWTs specification, market statistics, the smart grid, and the prosumer concepts as well as the most important parameters affecting the efficiency of wind turbines. Then, both the literature review and series of coupled numerical simulations investigating impact of the chosen design solutions on small wind turbine operation are performed. It allowed objective evaluation of different design approaches, which in turn enabled the systematic identification of actual limitations as well as the opportunities for specific design solutions of SWTs: horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs); the rotor position in relation to the tower (upwind vs. downwind); and diffusor-augmented wind turbine (DAWT). Additionally, an economic evaluation is carried with the use of an advanced numerical Weather Research & Forecasting (WRF) model. It is shown that auxiliary power generation using privately owned SWTs can be an economically viable option. Finally, a set of design goals for future SWTs is formulated based on the performed numerical analyses

    The mathematical characteristic of the fifth order Laplace contour filters used in digital image processing

    Get PDF
    The Laplace operator is a differential operator which is used to detect edges of objects in digital images. This paper presents the properties of the most commonly used fifth-order pixels Laplace filters including the difference schemes used to derive them (finite difference method – FDM and finite element method – FEM). The results of the research concerning third-order pixels matrices of the convolution Laplace filters used for digital processing of images were presented in our previous paper: The mathematical characteristic of the Laplace contour filters used in digital image processing. The third order filters is presented byWinnicki et al. (2022). As previously, the authors focused on the mathematical properties of the Laplace filters: their transfer functions and modified differential equations (MDE). The relations between the transfer function for the differential Laplace operator and its difference operators are described and presented here in graphical form. The impact of the corner elements of the masks on the results is also discussed. A transfer function, is a function characterizing properties of the difference schemes applied to approximate differential operators. Since they are relations derived in both types of spaces (continuous and discrete), comparing them facilitates the assessment of the applied approximation method

    The mathematical characteristic of the Laplace contour filters used in digital image processing. The third order filters

    Get PDF
    The Laplace operator is a differential operator which is used to detect edges of objects in digital images. This paper presents the properties of the most commonly used third-order 3x3 pixels Laplace contour filters including the difference schemes used to derive them. The authors focused on the mathematical properties of the Laplace filters. The basic reasons of the differences of the properties were studied and indicated using their transfer functions and modified differential equations. The relations between the transfer function for the differential Laplace operator and its difference operators were described and presented graphically. The impact of the corner elements of the masks on the results was discussed. This is a theoretical work. The basic research conducted here refers to a few practical examples which are illustrations of the derived conclusions.We are aware that unambiguous and even categorical final statements as well as indication of areas of the results application always require numerous experiments and frequent dissemination of the results. Therefore, we present only a concise procedure of determination of the mathematical properties of the Laplace contour filters matrices. In the next paper we shall present the spectral characteristic of the fifth order filters of the Laplace type

    Evaluation of High-Resolution Land Cover Geographical Data for the WRF Model Simulations

    No full text
    Increased computing power has made it possible to run simulations of the Weather Research and Forecasting (WRF) numerical model in high spatial resolution. However, running high-resolution simulations requires a higher-detail mapping of landforms, land use, and land cover. Often, higher-resolution data have limited coverage or availability. This paper presents the feasibility of using CORINE Land Cover (CLC) land use and land cover data and alternative high-resolution global coverage land use/land cover (LULC) data from Copernicus Global Land Service Land Cover Map (CGLS-LC100) V2.0 in high-resolution WRF simulations (100 × 100 m). Global LULC data with a resolution of 100 m are particularly relevant for areas not covered by CLC. This paper presents the method developed by the authors for reclassifying land cover data from CGLS-LC100 to MODIS land use classes with defined parameters in the WRF model and describes the procedure for their implementation into the model. The obtained simulation results of the basic meteorological parameters from the WRF simulation using CLC, CGLS-LC100 and default geographical data from MODIS were compared to observations from 13 meteorological stations in the Warsaw area. The research has indicated noticeable changes in the forecasts of temperature, relative humidity wind speed, and direction after using higher-resolution LULC data. The verification results show a significant difference in weather predictions in terms of CLC and CGLS-LC100 LULC data implementation. Due to the fact that better results were obtained for CLC simulations than for CGLS-LC100, it is suggested that CLC data are first used for simulations in numerical weather prediction models and to use CGLS-LC100 data when the area is outside of CLC coverage
    corecore