2,122 research outputs found

    Asymptotic properties of the development of conformally flat data near spatial infinity

    Get PDF
    Certain aspects of the behaviour of the gravitational field near null and spatial infinity for the developments of asymptotically Euclidean, conformally flat initial data sets are analysed. Ideas and results from two different approaches are combined: on the one hand the null infinity formalism related to the asymptotic characteristic initial value problem and on the other the regular Cauchy initial value problem at spatial infinity which uses Friedrich's representation of spatial infinity as a cylinder. The decay of the Weyl tensor for the developments of the class of initial data under consideration is analysed under some existence and regularity assumptions for the asymptotic expansions obtained using the cylinder at spatial infinity. Conditions on the initial data to obtain developments satisfying the Peeling Behaviour are identified. Further, the decay of the asymptotic shear on null infinity is also examined as one approaches spatial infinity. This decay is related to the possibility of selecting the Poincar\'e group out of the BMS group in a canonical fashion. It is found that for the class of initial data under consideration, if the development peels, then the asymptotic shear goes to zero at spatial infinity. Expansions of the Bondi mass are also examined. Finally, the Newman-Penrose constants of the spacetime are written in terms of initial data quantities and it is shown that the constants defined at future null infinity are equal to those at past null infinity.Comment: 24 pages, 1 figur

    Can one detect a non-smooth null infinity?

    Get PDF
    It is shown that the precession of a gyroscope can be used to elucidate the nature of the smoothness of the null infinity of an asymptotically flat spacetime (describing an isolated body). A model for which the effects of precession in the non-smooth null infinity case are of order r−2ln⁡rr^{-2}\ln r is proposed. By contrast, in the smooth version the effects are of order r−3r^{-3}. This difference should provide an effective criterion to decide on the nature of the smoothness of null infinity.Comment: 6 pages, to appear in Class. Quantum Gra

    Painleve-Gullstrand Coordinates for the Kerr Solution

    Full text link
    We construct a coordinate system for the Kerr solution, based on the zero angular momentum observers dropped from infinity, which generalizes the Painleve-Gullstrand coordinate system for the Schwarzschild solution. The Kerr metric can then be interpreted as describing space flowing on a (curved) Riemannian 3-manifold. The stationary limit arises as the set of points on this manifold where the speed of the flow equals the speed of light, and the horizons as the set of points where the radial speed equals the speed of light. A deeper analysis of what is meant by the flow of space reveals that the acceleration of free-falling objects is generally not in the direction of this flow. Finally, we compare the new coordinate system with the closely related Doran coordinate system.Comment: 6 pages; v2: new section, matches final published version; v3: sign error in the expression of the function delta correcte

    Extreme Bowen-York initial data

    Full text link
    The Bowen-York family of spinning black hole initial data depends essentially on one, positive, free parameter. The extreme limit corresponds to making this parameter equal to zero. This choice represents a singular limit for the constraint equations. We prove that in this limit a new solution of the constraint equations is obtained. These initial data have similar properties to the extreme Kerr and Reissner-Nordstrom black hole initial data. In particular, in this limit one of the asymptotic ends changes from asymptotically flat to cylindrical. The existence proof is constructive, we actually show that a sequence of Bowen-York data converges to the extreme solution.Comment: 21 page

    Soluble two-species diffusion-limited Models in arbitrary dimensions

    Full text link
    A class of two-species ({\it three-states}) bimolecular diffusion-limited models of classical particles with hard-core reacting and diffusing in a hypercubic lattice of arbitrary dimension is investigated. The manifolds on which the equations of motion of the correlation functions close, are determined explicitly. This property allows to solve for the density and the two-point (two-time) correlation functions in arbitrary dimension for both, a translation invariant class and another one where translation invariance is broken. Systems with correlated as well as uncorrelated, yet random initial states can also be treated exactly by this approach. We discuss the asymptotic behavior of density and correlation functions in the various cases. The dynamics studied is very rich.Comment: 28 pages, 0 figure. To appear in Physical Review E (February 2001

    Gravitational waves and dragging effects

    Full text link
    Linear and rotational dragging effects of gravitational waves on local inertial frames are studied in purely vacuum spacetimes. First the linear dragging caused by a simple cylindrical pulse is investigated. Surprisingly strong transversal effects of the pulse are exhibited. The angular momentum in cylindrically symmetric spacetimes is then defined and confronted with some results in literature. In the main part, the general procedure is developed for studying weak gravitational waves with translational but not axial symmetry which can carry angular momentum. After a suitable averaging the rotation of local inertial frames due to such rotating waves can be calculated explicitly and illustrated graphically. This is done in detail in the accompanying paper. Finally, the rotational dragging is given for strong cylindrical waves interacting with a rotating cosmic string with a small angular momentum.Comment: Scheduled to appear in Class. Quantum Grav. July 200

    Symmetry and species segregation in diffusion-limited pair annihilation

    Full text link
    We consider a system of q diffusing particle species A_1,A_2,...,A_q that are all equivalent under a symmetry operation. Pairs of particles may annihilate according to A_i + A_j -> 0 with reaction rates k_{ij} that respect the symmetry, and without self-annihilation (k_{ii} = 0). In spatial dimensions d > 2 mean-field theory predicts that the total particle density decays as n(t) ~ 1/t, provided the system remains spatially uniform. We determine the conditions on the matrix k under which there exists a critical segregation dimension d_{seg} below which this uniformity condition is violated; the symmetry between the species is then locally broken. We argue that in those cases the density decay slows down to n(t) ~ t^{-d/d_{seg}} for 2 < d < d_{seg}. We show that when d_{seg} exists, its value can be expressed in terms of the ratio of the smallest to the largest eigenvalue of k. The existence of a conservation law (as in the special two-species annihilation A + B -> 0), although sufficient for segregation, is shown not to be a necessary condition for this phenomenon to occur. We work out specific examples and present Monte Carlo simulations compatible with our analytical results.Comment: latex, 19 pages, 3 eps figures include

    On the construction of a geometric invariant measuring the deviation from Kerr data

    Full text link
    This article contains a detailed and rigorous proof of the construction of a geometric invariant for initial data sets for the Einstein vacuum field equations. This geometric invariant vanishes if and only if the initial data set corresponds to data for the Kerr spacetime, and thus, it characterises this type of data. The construction presented is valid for boosted and non-boosted initial data sets which are, in a sense, asymptotically Schwarzschildean. As a preliminary step to the construction of the geometric invariant, an analysis of a characterisation of the Kerr spacetime in terms of Killing spinors is carried out. A space spinor split of the (spacetime) Killing spinor equation is performed, to obtain a set of three conditions ensuring the existence of a Killing spinor of the development of the initial data set. In order to construct the geometric invariant, we introduce the notion of approximate Killing spinors. These spinors are symmetric valence 2 spinors intrinsic to the initial hypersurface and satisfy a certain second order elliptic equation ---the approximate Killing spinor equation. This equation arises as the Euler-Lagrange equation of a non-negative integral functional. This functional constitutes part of our geometric invariant ---however, the whole functional does not come from a variational principle. The asymptotic behaviour of solutions to the approximate Killing spinor equation is studied and an existence theorem is presented.Comment: 36 pages. Updated references. Technical details correcte

    Persistence in the One-Dimensional A+B -> 0 Reaction-Diffusion Model

    Full text link
    The persistence properties of a set of random walkers obeying the A+B -> 0 reaction, with equal initial density of particles and homogeneous initial conditions, is studied using two definitions of persistence. The probability, P(t), that an annihilation process has not occurred at a given site has the asymptotic form P(t)−>const+t−ξP(t) -> const + t^{-\theta}, where Ξ\theta is the persistence exponent (``type I persistence''). We argue that, for a density of particles ρ>>1\rho >> 1, this non-trivial exponent is identical to that governing the persistence properties of the one-dimensional diffusion equation, where ξ≈0.1207\theta \approx 0.1207. In the case of an initially low density, ρ0<<1\rho_0 << 1, we find ξ≈1/4\theta \approx 1/4 asymptotically. The probability that a site remains unvisited by any random walker (``type II persistence'') is also investigated and found to decay with a stretched exponential form, P(t)∌exp⁥(−constρ01/2t1/4)P(t) \sim \exp(-const \rho_0^{1/2}t^{1/4}), provided ρ0<<1\rho_0 << 1. A heuristic argument for this behavior, based on an exactly solvable toy model, is presented.Comment: 11 RevTeX pages, 19 EPS figure
    • 

    corecore