3,848 research outputs found

    Asymptotic properties of the development of conformally flat data near spatial infinity

    Get PDF
    Certain aspects of the behaviour of the gravitational field near null and spatial infinity for the developments of asymptotically Euclidean, conformally flat initial data sets are analysed. Ideas and results from two different approaches are combined: on the one hand the null infinity formalism related to the asymptotic characteristic initial value problem and on the other the regular Cauchy initial value problem at spatial infinity which uses Friedrich's representation of spatial infinity as a cylinder. The decay of the Weyl tensor for the developments of the class of initial data under consideration is analysed under some existence and regularity assumptions for the asymptotic expansions obtained using the cylinder at spatial infinity. Conditions on the initial data to obtain developments satisfying the Peeling Behaviour are identified. Further, the decay of the asymptotic shear on null infinity is also examined as one approaches spatial infinity. This decay is related to the possibility of selecting the Poincar\'e group out of the BMS group in a canonical fashion. It is found that for the class of initial data under consideration, if the development peels, then the asymptotic shear goes to zero at spatial infinity. Expansions of the Bondi mass are also examined. Finally, the Newman-Penrose constants of the spacetime are written in terms of initial data quantities and it is shown that the constants defined at future null infinity are equal to those at past null infinity.Comment: 24 pages, 1 figur

    On the existence and convergence of polyhomogeneous expansions of zero-rest-mass fields

    Get PDF
    The convergence of polyhomogeneous expansions of zero-rest-mass fields in asymptotically flat spacetimes is discussed. An existence proof for the asymptotic characteristic initial value problem for a zero-rest-mass field with polyhomogeneous initial data is given. It is shown how this non-regular problem can be properly recast as a set of regular initial value problems for some auxiliary fields. The standard techniques of symmetric hyperbolic systems can be applied to these new auxiliary problems, thus yielding a positive answer to the question of existence in the original problem.Comment: 10 pages, 1 eps figur

    Approximate twistors and positive mass

    Full text link
    In this paper the problem of comparing initial data to a reference solution for the vacuum Einstein field equations is considered. This is not done in a coordinate sense, but through quantification of the deviation from a specific symmetry. In a recent paper [T. B\"ackdahl, J.A. Valiente Kroon, Phys. Rev. Lett. 104, 231102 (2010)] this problem was studied with the Kerr solution as a reference solution. This analysis was based on valence 2 Killing spinors. In order to better understand this construction, in the present article we analyse the analogous construction for valence 1 spinors solving the twistor equation. This yields an invariant that measures how much the initial data deviates from Minkowski data. Furthermore, we prove that this invariant vanishes if and only of the mass vanishes. Hence, we get a proof of the positivity of mass.Comment: 18 pages, corrected typos, updated reference

    Can one detect a non-smooth null infinity?

    Get PDF
    It is shown that the precession of a gyroscope can be used to elucidate the nature of the smoothness of the null infinity of an asymptotically flat spacetime (describing an isolated body). A model for which the effects of precession in the non-smooth null infinity case are of order r−2ln⁡rr^{-2}\ln r is proposed. By contrast, in the smooth version the effects are of order r−3r^{-3}. This difference should provide an effective criterion to decide on the nature of the smoothness of null infinity.Comment: 6 pages, to appear in Class. Quantum Gra

    A rigidity property of asymptotically simple spacetimes arising from conformally flat data

    Full text link
    Given a time symmetric initial data set for the vacuum Einstein field equations which is conformally flat near infinity, it is shown that the solutions to the regular finite initial value problem at spatial infinity extend smoothly through the critical sets where null infinity touches spatial infinity if and only if the initial data coincides with Schwarzschild data near infinity.Comment: 37 page

    Time asymmetric spacetimes near null and spatial infinity. I. Expansions of developments of conformally flat data

    Full text link
    The Conformal Einstein equations and the representation of spatial infinity as a cylinder introduced by Friedrich are used to analyse the behaviour of the gravitational field near null and spatial infinity for the development of data which are asymptotically Euclidean, conformally flat and time asymmetric. Our analysis allows for initial data whose second fundamental form is more general than the one given by the standard Bowen-York Ansatz. The Conformal Einstein equations imply upon evaluation on the cylinder at spatial infinity a hierarchy of transport equations which can be used to calculate in a recursive way asymptotic expansions for the gravitational field. It is found that the the solutions to these transport equations develop logarithmic divergences at certain critical sets where null infinity meets spatial infinity. Associated to these, there is a series of quantities expressible in terms of the initial data (obstructions), which if zero, preclude the appearance of some of the logarithmic divergences. The obstructions are, in general, time asymmetric. That is, the obstructions at the intersection of future null infinity with spatial infinity are different, and do not generically imply those obtained at the intersection of past null infinity with spatial infinity. The latter allows for the possibility of having spacetimes where future and past null infinity have different degrees of smoothness. Finally, it is shown that if both sets of obstructions vanish up to a certain order, then the initial data has to be asymptotically Schwarzschildean to some degree.Comment: 32 pages. First part of a series of 2 papers. Typos correcte

    Studying Attractor Symmetries by Means of Cross Correlation Sums

    Full text link
    We use the cross correlation sum introduced recently by H. Kantz to study symmetry properties of chaotic attractors. In particular, we apply it to a system of six coupled nonlinear oscillators which was shown by Kroon et al. to have attractors with several different symmetries, and compare our results with those obtained by ``detectives" in the sense of Golubitsky et al.Comment: LaTeX file, 16 pages and 16 postscript figures; tarred, gzipped and uuencoded; submitted to 'Nonlinearity

    Painleve-Gullstrand Coordinates for the Kerr Solution

    Full text link
    We construct a coordinate system for the Kerr solution, based on the zero angular momentum observers dropped from infinity, which generalizes the Painleve-Gullstrand coordinate system for the Schwarzschild solution. The Kerr metric can then be interpreted as describing space flowing on a (curved) Riemannian 3-manifold. The stationary limit arises as the set of points on this manifold where the speed of the flow equals the speed of light, and the horizons as the set of points where the radial speed equals the speed of light. A deeper analysis of what is meant by the flow of space reveals that the acceleration of free-falling objects is generally not in the direction of this flow. Finally, we compare the new coordinate system with the closely related Doran coordinate system.Comment: 6 pages; v2: new section, matches final published version; v3: sign error in the expression of the function delta correcte

    The new Dutch timetable: The OR revolution

    Get PDF
    In December 2006, Netherlands Railways introduced a completely new timetable. Its objective was to facilitate the growth of passenger and freight transport on a highly utilized railway network, and improve the robustness of the timetable resulting in less train delays in the operation. Further adjusting the existing timetable constructed in 1970 was not option anymore, because further growth would then require significant investments in the rail infrastructure. Constructing a railway timetable from scratch for about 5,500 daily trains was a complex problem. To support this process, we generated several timetables using sophisticated operations research techniques, and finally selected and implemented one of these timetables. Furthermore, because rolling-stock and crew costs are principal components of the cost of a passenger railway operator, we used innovative operations research tools to devise efficient schedules for these two resources. The new resource schedules and the increased number of passengers resulted in an additional annual profit of 40 million euros (60million)ofwhichabout10millioneuroswerecreatedbyadditionalrevenues.Weexpectthistoincreaseto70millioneuros(60 million) of which about 10 million euros were created by additional revenues. We expect this to increase to 70 million euros (105 million) annually in the coming years. However, the benefits of the new timetable for the Dutch society as a whole are much greater: more trains are transporting more passengers on the same railway infrastructure, and these trains are arriving and departing on schedule more than they ever have in the past. In addition, the rail transport system will be able to handle future transportation demand growth and thus allow cities to remain accessible. Therefore, people can switch from car transport to rail transport, which will reduce the emission of greenhouse gases.
    • 

    corecore