33 research outputs found

    Effect of tilted and short distal implants on axial forces and bending moments in implants supporting FDPs: an in vitro study

    No full text
    PURPOSE: The aim of this study was to evaluate the axial forces (AFs) and bending moments (BMs) on implants supporting a fixed dental prosthesis (FDP) with a distal cantilever (10 mm) compared to an FDP supported by a tilted or short (7 mm instead of 13 mm) posterior implant by means of in vitro strain gauge measurements. MATERIALS AND METHODS: Nine titanium Branemark implants were placed in an edentulous composite mandible. The mechanical loading conditions were evaluated for the following three situations: (1) short distal implants supporting a cantilever, (2) long tilted distal implants, and (3) no distal implants supporting a cantilever. A vertical load of 50 N was applied at the first molar position, and the resultant AFs and BMs were measured for the three different situations, three different numbers of supporting implants (three, four, or five), and three different prosthesis materials (titanium, acrylic, and fiber-reinforced acrylic). RESULTS: The mean BMs, as well as the maximum AFs and BMs, were significantly higher in the model with a cantilever compared to that having the tilted or short distal implants (P < .001). There was no significant difference between the models with a distally tilted implant versus a short distal implant. CONCLUSION: The use of posterior implants reduced the AFs and BMs on implants supporting an FDP compared to that with a distal cantilever. No difference in mechanical loading was observed between short tilted distal implants.status: publishe

    Impact of implant number, distribution and prosthesis material on loading on implants supporting fixed prostheses

    No full text
    The purpose of this study is to evaluate axial forces and bending moments (BMs) on implants supporting a complete arch fixed implant supported prosthesis with respect to number and distribution of the implants and type of prosthesis material. Seven oral BrÄnemark implants with a diameter of 3.75 mm and a length of 13 and 7 mm (short distal implant) were placed in an edentulous composite mandible used as the experimental model. One all-acrylic, one fibre-reinforced acrylic, and one milled titanium framework prosthesis were made. A 50 N vertical load was applied on the extension 10 mm distal from the most posterior implant. Axial forces and BMs were measured by calculating signals from three strain gauges attached to each of the abutments. The load was measured using three different models with varying numbers of supporting implants (3, 4 and 5), three models with different implant distribution conditions (small, medium and large) and three models with different prosthesis materials (titanium, acrylic and fibre-reinforced acrylic). Maximum BMs were highest when prostheses were supported by three implants compared to four and five implants (P < 0.001). The BMs were significantly influenced by the implant distribution, in that the smallest distribution induced the highest BMs (P < 0.001). Maximum BMs were lowest with the titanium prosthesis (P < 0.01). The resultant forces on implants were significantly associated with the implant number and distribution and the prosthesis material.status: publishe
    corecore