7,955 research outputs found

    A Correlation Between Changes in Solar Luminosity and Differential Radius Measurements

    Get PDF
    Solar luminosity variations occurring during solar cycle 21 can be attributed in large part to the presence of sunspots and faculae. Nevertheless, there remains a residual portion of the luminosity variation distinctly unaccounted for by these phenomena of solar activity. At the Santa Catalina Laboratory for Experimental Relativity by Astrometry (SCLERA), observations of the solar limb are capable of detecting changes in the solar limb darkening function by monitoring a quantity known as the differential radius. These observations are utilized in such a way that the effects of solar activity are minimized in order to reveal the more fundamental structure of the photosphere. The results of observations made during solar cycle 21 at various solar latitudes indicate that a measurable change did occur in the global photospheric limb darkening function. It is proposed that the residual luminosity change is associated in part with this change in limb darkening

    Quenched charge disorder in CuO2 spin chains: Experimental and numerical studies

    Full text link
    We report on measurements of the magnetic response of the anisotropic CuO_2 spin chains in lightly hole-doped La_x (Ca,Sr)_14-x Cu_24 O_41, x>=5. The experimental data suggest that in magnetic fields B >~ 4T (applied along the easy axis) the system is characterized by short-range spin order and quasi-static (quenched) charge disorder. The magnetic susceptibility chi(B) shows a broad anomaly, which we interpret as the remnant of a spin-flop transition. To corroborate this idea, we present Monte Carlo simulations of a classical, anisotropic Heisenberg model with randomly distributed, static holes. Our numerical results clearly show that the spin-flop transition of the pure model (without holes) is destroyed and smeared out due to the disorder introduced by the quasi-static holes. Both the numerically calculated susceptibility curves chi(B) and the temperature dependence of the position of the anomaly are in qualitative agreement with the experimental data.Comment: 10 pages, REVTeX4. 11 figures; v2: Fig.2 replaced, small changes in Figs.1 and 11; minor revisons in Sec. III.C; accepted by Phys. Rev.

    Magnetization of undoped 2-leg S = 1/2 spin ladders in La4Sr10Cu24O41

    Full text link
    Magnetization data of single crystalline La4Sr10Cu24O41 are presented. In this compound, doped spin chains and undoped spin ladders are realized. The magnetization, at low temperatures, is governed by the chain subsystem with a finite interchain coupling which leads to short range antiferromagnetic spin correlations. At higher temperatures, the response of the chains can be estimated in terms of a Curie-Weiss law. For the ladders, we apply the low-temperature approximation for a S=1/2 2-leg spin ladder by Troyer et al.Comment: 2 pages, 2 figure

    Exclusive Photoproduction of Large Momentum-Transfer K and K* Mesons

    Full text link
    The reactions gamma p -> K+ Lambda and gamma p -> K* Lambda are analyzed within perturbative QCD, allowing for diquarks as quasi-elementary constituents of baryons. The diquark-model parameters and the quark-diquark distribution amplitudes of proton and Lambda are taken from previous investigations of electromagnetic baryon form factors and Compton-scattering off protons. Unpolarized differential cross sections and polarization observables are computed for different choices of the K and K* distribution amplitudes. The asymptotic form of the K distribution amplitude (proportional to x1 x2) is found to provide a satisfactory description of the K photoproduction data.Comment: 32 pages, 7 figures available as tared, compressed and uuencoded PS-file

    Weighted-density approximation for general nonuniform fluid mixtures

    Get PDF
    In order to construct a general density-functional theory for nonuniform fluid mixtures, we propose an extension to multicomponent systems of the weighted-density approximation (WDA) of Curtin and Ashcroft [Phys. Rev. A 32, 2909 (1985)]. This extension corrects a deficiency in a similar extension proposed earlier by Denton and Ashcroft [Phys. Rev. A 42, 7312 (1990)], in that that functional cannot be applied to the multi-component nonuniform fluid systems with spatially varying composition, such as solid-fluid interfaces. As a test of the accuracy of our new functional, we apply it to the calculation of the freezing phase diagram of a binary hard-sphere fluid, and compare the results to simulation and the Denton-Ashcroft extension.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E as Brief Repor

    Dynamic correlations in stochastic rotation dynamics

    Full text link
    The dynamic structure factor, vorticity and entropy density dynamic correlation functions are measured for Stochastic Rotation Dynamics (SRD), a particle based algorithm for fluctuating fluids. This allows us to obtain unbiased values for the longitudinal transport coefficients such as thermal diffusivity and bulk viscosity. The results are in good agreement with earlier numerical and theoretical results, and it is shown for the first time that the bulk viscosity is indeed zero for this algorithm. In addition, corrections to the self-diffusion coefficient and shear viscosity arising from the breakdown of the molecular chaos approximation at small mean free paths are analyzed. In addition to deriving the form of the leading correlation corrections to these transport coefficients, the probabilities that two and three particles remain collision partners for consecutive time steps are derived analytically in the limit of small mean free path. The results of this paper verify that we have an excellent understanding of the SRD algorithm at the kinetic level and that analytic expressions for the transport coefficients derived elsewhere do indeed provide a very accurate description of the SRD fluid.Comment: 33 pages including 16 figure

    Kink-induced transport and segregation in oscillated granular layers

    Get PDF
    We use experiments and molecular dynamics simulations of vertically oscillated granular layers to study horizontal particle segregation induced by a kink (a boundary between domains oscillating out of phase). Counter-rotating convection rolls carry the larger particles in a bidisperse layer along the granular surface to a kink, where they become trapped. The convection originates from avalanches that occur inside the layer, along the interface between solidified and fluidized grains. The position of a kink can be controlled by modulation of the container frequency, making possible systematic harvesting of the larger particles.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let

    X-ray absorption spectroscopy on layered cobaltates Na_xCoO_2

    Full text link
    Measurements of polarization and temperature dependent soft x-ray absorption have been performed on Na_xCoO_2 single crystals with x=0.4 and x=0.6. They show a deviation of the local trigonal symmetry of the CoO_6 octahedra, which is temperature independent in a temperature range between 25 K and 372 K. This deviation was found to be different for Co^{3+} and Co^{4+} sites. With the help of a cluster calculation we are able to interpret the Co L_{23}-edge absorption spectrum and find a doping dependent energy splitting between the t_{2g} and the e_g levels (10Dq) in Na_xCoO_2.Comment: 7 pages, 8 figure

    Keck-Nirspec Infrared OH Lines: Oxygen Abundances in Metal-Poor Stars Down to [Fe/H] = -2.9

    Get PDF
    Infrared OH lines at 1.5 - 1.7 um in the H band were obtained with the NIRSPEC high-resolution spectrograph at the 10m Keck Telescope for a sample of seven metal-poor stars. Detailed analyses have been carried out, based on optical high-resolution data obtained with the FEROS spectrograph at ESO. Stellar parameters were derived by adopting infrared flux method effective temperatures, trigonometric and/or evolutionary gravities and metallicities from FeII lines. We obtain that the sample stars with metallicities [Fe/H] < -2.2 show a mean oxygen abundance [O/Fe] ~ 0.54, for a solar oxygen abundance of epsilon(O) = 8.87, or [O/Fe] ~ 0.64 if epsilon(O) = 8.77 is assumed.Comment: To be published in ApJ 575 (August 10

    Infinite Momentum Frame Calculation of Semileptonic Heavy \Lambda_b\to\Lambda_c Transitions Including HQET Improvements

    Full text link
    We calculate the transition form factors that occur in heavy Λ\Lambda-type baryon semileptonic decays as e.g. in Λb→Λc++l−+νˉl\Lambda_{b} \to \Lambda_{c}^{+} + l^{-} + \bar{\nu}_{l} . We use Bauer-Stech-Wirbel type infinite momentum frame wave functions for the heavy Λ\Lambda-type baryons which we assume to consist of a heavy quark and a light spin-isospin zero diquark system. The form factors at q2=0 q^{2} = 0 are calculated from the overlap integrals of the initial and final Λ\Lambda-type baryon states. To leading order in the heavy mass scale the structure of the form factors agrees with the HQET predictions including the normalization at zero recoil. The leading order ω\omega-dependence of the form factors is extracted by scaling arguments. By comparing the model form factors with the HQET predictions at O(1/mQ){\cal O}(1/m_{Q}) we obtain a consistent set of model form factors up to O(1/mQ){\cal O}(1/m_{Q}). With our preferred choice of parameter values we find that the contribution of the non-leading form factor is practically negligible. We use our form factor predictions to compute rates, spectra and various asymmetry parameters for the semi-leptonic decay Λb→Λc++l−+νˉl\Lambda_{b} \to \Lambda_{c}^{+} + l^{-} + \bar{\nu}_{l} .Comment: 24 pages, LaTeX, 6 figures are included in PostScript format. Final version of paper to appear in Phys.Rev.
    • …
    corecore