9,742 research outputs found
Octet-Baryon Form Factors in the Diquark Model
We present an alternative parameterization of the quark-diquark model of
baryons which particularly takes care of the most recent proton electric
form-factor data from the E136 experiment at SLAC. In addition to
electromagnetic form factors of the nucleon, for which good agreement with data
is achieved, we discuss the weak axial vector form factor of the nucleon as
well as electromagnetic form factors of and hyperons.
Technical advance in calculating the pertinent analytic expressions within
perturbative quantum chromodynamics is gained by formulating the wave function
of the quark-diquark system in a covariant way. Finally, we also comment on the
influence of Sudakov corrections within the scope of the diquark model.Comment: 16 pages, WU-B 93-07, latex, uuencoded postscript files of 7 figures
appended at the end of the latex fil
Including internal losses in the equivalent circuit model of the SLAC damped detuned structure (DDS)
Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways
Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitrogen oxide (NO) or hydroperoxy radical (HO2) to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to formation of SOA, with a total production nearly equal that of toluene and xylene combined. In total, while only 39% percent of the aromatic species react via the low-NOx pathway, 72% of the aromatic SOA is formed via this mechanism. Predicted SOA concentrations from aromatics in the Eastern United States and Eastern Europe are actually largest during the summer, when the [NO]/[HO2] ratio is lower. Global production of SOA from aromatic sources is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Compared to recent observations, it would appear there are additional pathways beyond those accounted for here for production of anthropogenic SOA. However, owing to differences in spatial distributions of sources and seasons of peak production, there are still regions in which aromatic SOA produced via the mechanisms identified here are predicted to contribute substantially to, and even dominate, the local SOA concentrations, such as outflow regions from North America and South East Asia during the wintertime, though total SOA concentrations there are small (~0.1 μg/m^³)
Dynamic correlations in stochastic rotation dynamics
The dynamic structure factor, vorticity and entropy density dynamic
correlation functions are measured for Stochastic Rotation Dynamics (SRD), a
particle based algorithm for fluctuating fluids. This allows us to obtain
unbiased values for the longitudinal transport coefficients such as thermal
diffusivity and bulk viscosity. The results are in good agreement with earlier
numerical and theoretical results, and it is shown for the first time that the
bulk viscosity is indeed zero for this algorithm. In addition, corrections to
the self-diffusion coefficient and shear viscosity arising from the breakdown
of the molecular chaos approximation at small mean free paths are analyzed. In
addition to deriving the form of the leading correlation corrections to these
transport coefficients, the probabilities that two and three particles remain
collision partners for consecutive time steps are derived analytically in the
limit of small mean free path. The results of this paper verify that we have an
excellent understanding of the SRD algorithm at the kinetic level and that
analytic expressions for the transport coefficients derived elsewhere do indeed
provide a very accurate description of the SRD fluid.Comment: 33 pages including 16 figure
Infinite Momentum Frame Calculation of Semileptonic Heavy \Lambda_b\to\Lambda_c Transitions Including HQET Improvements
We calculate the transition form factors that occur in heavy -type
baryon semileptonic decays as e.g. in . We use Bauer-Stech-Wirbel type infinite momentum frame wave
functions for the heavy -type baryons which we assume to consist of a
heavy quark and a light spin-isospin zero diquark system. The form factors at are calculated from the overlap integrals of the initial and final
-type baryon states. To leading order in the heavy mass scale the
structure of the form factors agrees with the HQET predictions including the
normalization at zero recoil. The leading order -dependence of the form
factors is extracted by scaling arguments. By comparing the model form factors
with the HQET predictions at we obtain a consistent set of
model form factors up to . With our preferred choice of
parameter values we find that the contribution of the non-leading form factor
is practically negligible. We use our form factor predictions to compute rates,
spectra and various asymmetry parameters for the semi-leptonic decay
.Comment: 24 pages, LaTeX, 6 figures are included in PostScript format. Final
version of paper to appear in Phys.Rev.
Secondary aerosol formation from atmospheric reactions of aliphatic amines
Although aliphatic amines have been detected in both urban and rural atmospheric aerosols, little is known about the chemistry leading to particle formation or the potential aerosol yields from reactions of gas-phase amines. We present here the first systematic study of aerosol formation from the atmospheric reactions of amines. Based on laboratory chamber experiments and theoretical calculations, we evaluate aerosol formation from reaction of OH, ozone, and nitric acid with trimethylamine, methylamine, triethylamine, diethylamine, ethylamine, and ethanolamine. Entropies of formation for alkylammonium nitrate salts are estimated by molecular dynamics calculations enabling us to estimate equilibrium constants for the reactions of amines with nitric acid. Though subject to significant uncertainty, the calculated dissociation equilibrium constant for diethylammonium nitrate is found to be sufficiently small to allow for its atmospheric formation, even in the presence of ammonia which competes for available nitric acid. Experimental chamber studies indicate that the dissociation equilibrium constant for triethylammonium nitrate is of the same order of magnitude as that for ammonium nitrate. All amines studied form aerosol when photooxidized in the presence of NOx with the majority of the aerosol mass present at the peak of aerosol growth consisting of aminium (R3NH+) nitrate salts, which repartition back to the gas phase as the parent amine is consumed. Only the two tertiary amines studied, trimethylamine and triethylamine, are found to form significant non-salt organic aerosol when oxidized by OH or ozone; calculated organic mass yields for the experiments conducted are similar for ozonolysis (15% and 5% respectively) and photooxidation (23% and 8% respectively). The non-salt organic aerosol formed appears to be more stable than the nitrate salts and does not quickly repartition back to the gas phase
- …
