14 research outputs found
Evolution of Magnetic Fields around a Kerr Black Hole
The evolution of magnetic fields frozen to a perfectly conducting plasma
fluid around a Kerr black hole is investigated. We focus on the plunging region
between the black hole horizon and the marginally stable circular orbit in the
equatorial plane. Adopting the kinematic approximation where the dynamical
effects of magnetic fields are ignored, we exactly solve Maxwell's equations
with the assumptions that the geodesic motion of the fluid is stationary and
axisymmetric, the magnetic field has only radial and azimuthal components and
depends only on time and radial coordinates. We show that the stationary state
of the magnetic field in the plunging region is uniquely determined by the
boundary conditions at the marginally stable circular orbit. If the magnetic
field at the marginally stable circular orbit is in a stationary state, the
magnetic field in the plunging region will quickly settle into a stationary
state if it is not so initially, in a time determined by the dynamical time
scale. The radial component of the magnetic field at the marginally stable
circular orbit is more important than the toroidal component in determining the
structure and evolution of the magnetic field in the plunging region. Even if
at the marginally stable circular orbit the toroidal component is zero, in the
plunging region a toroidal component is quickly generated from the radial
component by the shear motion of the fluid. Finally, we show that the dynamical
effects of magnetic fields are unimportant in the plunging region if they are
negligible on the marginally stable circular orbit. This supports the
``no-torque inner boundary condition'' of thin disks, contrary to the claim in
the recent literature.Comment: 48 pages, including 13 figures; version with full resolution Figs at
http://cfa-www.harvard.edu/~lli/astro-ph/mag_evol.p
Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets
The spins of ten stellar black holes have been measured using the
continuum-fitting method. These black holes are located in two distinct classes
of X-ray binary systems, one that is persistently X-ray bright and another that
is transient. Both the persistent and transient black holes remain for long
periods in a state where their spectra are dominated by a thermal accretion
disk component. The spin of a black hole of known mass and distance can be
measured by fitting this thermal continuum spectrum to the thin-disk model of
Novikov and Thorne; the key fit parameter is the radius of the inner edge of
the black hole's accretion disk. Strong observational and theoretical evidence
links the inner-disk radius to the radius of the innermost stable circular
orbit, which is trivially related to the dimensionless spin parameter a_* of
the black hole (|a_*| < 1). The ten spins that have so far been measured by
this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95.
The robustness of the method is demonstrated by the dozens or hundreds of
independent and consistent measurements of spin that have been obtained for
several black holes, and through careful consideration of many sources of
systematic error. Among the results discussed is a dichotomy between the
transient and persistent black holes; the latter have higher spins and larger
masses. Also discussed is recently discovered evidence in the transient sources
for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2,
6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405)
who find no evidence for a correlation between the power of ballistic jets
and black hole spi
Atomic X-ray Spectroscopy of Accreting Black Holes
Current astrophysical research suggests that the most persistently luminous
objects in the Universe are powered by the flow of matter through accretion
disks onto black holes. Accretion disk systems are observed to emit copious
radiation across the electromagnetic spectrum, each energy band providing
access to rather distinct regimes of physical conditions and geometric scale.
X-ray emission probes the innermost regions of the accretion disk, where
relativistic effects prevail. While this has been known for decades, it also
has been acknowledged that inferring physical conditions in the relativistic
regime from the behavior of the X-ray continuum is problematic and not
satisfactorily constraining. With the discovery in the 1990s of iron X-ray
lines bearing signatures of relativistic distortion came the hope that such
emission would more firmly constrain models of disk accretion near black holes,
as well as provide observational criteria by which to test general relativity
in the strong field limit. Here we provide an introduction to this phenomenon.
While the presentation is intended to be primarily tutorial in nature, we aim
also to acquaint the reader with trends in current research. To achieve these
ends, we present the basic applications of general relativity that pertain to
X-ray spectroscopic observations of black hole accretion disk systems, focusing
on the Schwarzschild and Kerr solutions to the Einstein field equations. To
this we add treatments of the fundamental concepts associated with the
theoretical and modeling aspects of accretion disks, as well as relevant topics
from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian
Journal of Physics, in pres
General Relativistic MHD Jets
Magnetic fields connecting the immediate environs of rotating black holes to
large distances appear to be the most promising mechanism for launching
relativistic jets, an idea first developed by Blandford and Znajek in the
mid-1970s. To enable an understanding of this process, we provide a brief
introduction to dynamics and electromagnetism in the spacetime near black
holes. We then present a brief summary of the classical Blandford-Znajek
mechanism and its conceptual foundations. Recently, it has become possible to
study these effects in much greater detail using numerical simulation. After
discussing which aspects of the problem can be handled well by numerical means
and which aspects remain beyond the grasp of such methods, we summarize their
results so far. Simulations have confirmed that processes akin to the classical
Blandford-Znajek mechanism can launch powerful electromagnetically-dominated
jets, and have shown how the jet luminosity can be related to black hole spin
and concurrent accretion rate. However, they have also shown that the
luminosity and variability of jets can depend strongly on magnetic field
geometry. We close with a discussion of several important open questions.Comment: 21 pages, 2 figures, To appear in Belloni, T. (ed.): The Jet Paradigm
- From Microquasars to Quasars, Lect. Notes Phys. 794 (2009
General Overview of Black Hole Accretion Theory
I provide a broad overview of the basic theoretical paradigms of black hole
accretion flows. Models that make contact with observations continue to be
mostly based on the four decade old alpha stress prescription of Shakura &
Sunyaev (1973), and I discuss the properties of both radiatively efficient and
inefficient models, including their local properties, their expected stability
to secular perturbations, and how they might be tied together in global flow
geometries. The alpha stress is a prescription for turbulence, for which the
only existing plausible candidate is that which develops from the
magnetorotational instability (MRI). I therefore also review what is currently
known about the local properties of such turbulence, and the physical issues
that have been elucidated and that remain uncertain that are relevant for the
various alpha-based black hole accretion flow models.Comment: To be published in Space Science Reviews and as hard cover in the
Space Sciences Series of ISSI: The Physics of Accretion on to Black Holes
(Springer Publisher