4,798 research outputs found

    The Stadium

    Get PDF

    Quantifying the power of multiple event interpretations

    Full text link
    A number of methods have been proposed recently which exploit multiple highly-correlated interpretations of events, or of jets within an event. For example, Qjets reclusters a jet multiple times and telescoping jets uses multiple cone sizes. Previous work has employed these methods in pseudo-experimental analyses and found that, with a simplified statistical treatment, they give sizable improvements over traditional methods. In this paper, the improvement gain from multiple event interpretations is explored with methods much closer to those used in real experiments. To this end, we derive a generalized extended maximum likelihood procedure. We study the significance improvement in Higgs to bb with both this method and the simplified method from previous analysis. With either method, we find that using multiple jet radii can provide substantial benefit over a single radius. Another concern we address is that multiple event interpretations might be exploiting similar information to that already present in the standard kinematic variables. By examining correlations between kinematic variables commonly used in LHC analyses and invariant masses obtained with multiple jet reconstructions, we find that using multiple radii is still helpful even on top of standard kinematic variables when combined with boosted decision trees. These results suggest that including multiple event interpretations in a realistic search for Higgs to bb would give additional sensitivity over traditional approaches.Comment: 13 pages, 2 figure

    Jet Charge at the LHC

    Get PDF
    Knowing the charge of the parton initiating a light-quark jet could be extremely useful both for testing aspects of the Standard Model and for characterizing potential beyond-the-Standard-Model signals. We show that despite the complications of hadronization and out-of-jet radiation such as pile-up, a weighted sum of the charges of a jet's constituents can be used at the LHC to distinguish among jets with different charges. Potential applications include measuring electroweak quantum numbers of hadronically decaying resonances or supersymmetric particles, as well as Standard Model tests, such as jet charge in dijet events or in hadronically-decaying W bosons in t-tbar events. We develop a systematically improvable method to calculate moments of these charge distributions by combining multi-hadron fragmentation functions with perturbative jet functions and pertubative evolution equations. We show that the dependence on energy and jet size for the average and width of the jet charge can be calculated despite the large experimental uncertainty on fragmentation functions. These calculations can provide a validation tool for data independent of Monte-Carlo fragmentation models.Comment: 5 pages, 6 figures; v2 published versio

    On Statistical Aspects of Qjets

    Get PDF
    The process by which jet algorithms construct jets and subjets is inherently ambiguous and equally well motivated algorithms often return very different answers. The Qjets procedure was introduced by the authors to account for this ambiguity by considering many reconstructions of a jet at once, allowing one to assign a weight to each interpretation of the jet. Employing these weighted interpretations leads to an improvement in the statistical stability of many measurements. Here we explore in detail the statistical properties of these sets of weighted measurements and demonstrate how they can be used to improve the reach of jet-based studies.Comment: 29 pages, 6 figures. References added, minor modification of the text. This version to appear in JHE
    • …
    corecore