88 research outputs found
Very Light Axigluons and the Top Asymmetry
We show that very light (50 - 90 GeV) axigluons with flavor-universal
couplings of order g_{s}/3 may explain the anomalous top forward-backward
asymmetry reported by both CDF and D0 collaborations. The model is naturally
consistent with the observed t \bar t invariant mass distribution and evades
bounds from light Higgs searches, LEP event shapes, and hadronic observables at
the Z pole. Very light axigluons can appear as resonances in multijet events,
but searches require sensitivity to masses below current limits.Comment: 10 pages, 5 figures, references added, discussion of constraints
expanded, general conclusions unchange
Atomic Dark Matter
We propose that dark matter is dominantly comprised of atomic bound states.
We build a simple model and map the parameter space that results in the early
universe formation of hydrogen-like dark atoms. We find that atomic dark matter
has interesting implications for cosmology as well as direct detection:
Protohalo formation can be suppressed below for weak scale dark matter due to Ion-Radiation interactions in the
dark sector. Moreover, weak-scale dark atoms can accommodate hyperfine
splittings of order 100 \kev, consistent with the inelastic dark matter
interpretation of the DAMA data while naturally evading direct detection
bounds.Comment: 17 pages, 3 figure
MFV Reductions of MSSM Parameter Space
The 100+ free parameters of the minimal supersymmetric standard model (MSSM)
make it computationally difficult to compare systematically with data,
motivating the study of specific parameter reductions such as the cMSSM and
pMSSM. Here we instead study the reductions of parameter space implied by using
minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with
a view towards systematically building in constraints on flavour-violating
physics. Within this framework the space of parameters is reduced by expanding
soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a
24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42
respectively), depending on the order kept in the expansion. We provide a
Bayesian global fit to data of the MSSM-30 parameter set to show that this is
manageable with current tools. We compare the MFV reductions to the
19-parameter pMSSM choice and show that the pMSSM is not contained as a subset.
The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs
boson and with multi-TeV sparticles.Comment: 2nd version, minor comments and references added, accepted for
publication in JHE
Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab
MeV-GeV dark matter (DM) is theoretically well motivated but remarkably
unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential
for a 1 m segmented plastic scintillator detector placed downstream of the
beam-dump at one of the high intensity JLab experimental Halls, receiving up to
10 electrons-on-target (EOT) in a one-year period. This experiment
(Beam-Dump eXperiment or BDX) is sensitive to DM-nucleon elastic scattering at
the level of a thousand counts per year, with very low threshold recoil
energies (1 MeV), and limited only by reducible cosmogenic backgrounds.
Sensitivity to DM-electron elastic scattering and/or inelastic DM would be
below 10 counts per year after requiring all electromagnetic showers in the
detector to exceed a few-hundred MeV, which dramatically reduces or altogether
eliminates all backgrounds. Detailed Monte Carlo simulations are in progress to
finalize the detector design and experimental set up. An existing 0.036 m
prototype based on the same technology will be used to validate simulations
with background rate estimates, driving the necessary RD towards an
optimized detector. The final detector design and experimental set up will be
presented in a full proposal to be submitted to the next JLab PAC. A fully
realized experiment would be sensitive to large regions of DM parameter space,
exceeding the discovery potential of existing and planned experiments by two
orders of magnitude in the MeV-GeV DM mass range.Comment: 28 pages, 17 figures, submitted to JLab PAC 4
A high efficiency photon veto for the Light Dark Matter eXperiment
Fixed-target experiments using primary electron beams can be powerful discovery tools for light dark matter in the sub-GeV mass range. The Light Dark Matter eXperiment (LDMX) is designed to measure missing momentum in high-rate electron fixed-target reactions with beam energies of 4 GeV to 16 GeV. A prerequisite for achieving several important sensitivity milestones is the capability to efficiently reject backgrounds associated with few-GeV bremsstrahlung, by twelve orders of magnitude, while maintaining high efficiency for signal. The primary challenge arises from events with photo-nuclear reactions faking the missing-momentum property of a dark matter signal. We present a methodology developed for the LDMX detector concept that is capable of the required rejection. By employing a detailed Geant4-based model of the detector response, we demonstrate that the sampling calorimetry proposed for LDMX can achieve better than 10⁻¹³ rejection of few-GeV photons. This suggests that the luminosity-limited sensitivity of LDMX can be realized at 4 GeV and higher beam energies
Mechanical quantum sensing in the search for dark matter
Numerous astrophysical and cosmological observations are best explained by the existence of dark matter, a mass density which interacts only very weakly with visible, baryonic matter. Searching for the extremely weak signals produced by this dark matter strongly motivate the development of new, ultra-sensitive detector technologies. Paradigmatic advances in the control and readout of massive mechanical systems, in both the classical and quantum regimes, have enabled unprecedented levels of sensitivity. In this white paper, we outline recent ideas in the potential use of a range of solid-state mechanical sensing technologies to aid in the search for dark matter in a number of energy scales and with a variety of coupling mechanisms
A high efficiency photon veto for the Light Dark Matter eXperiment
Fixed-target experiments using primary electron beams can be powerful discovery tools for light dark matter in the sub-GeV mass range. The Light Dark Matter eXperiment (LDMX) is designed to measure missing momentum in high-rate electron fixed-target reactions with beam energies of 4 GeV to 16 GeV. A prerequisite for achieving several important sensitivity milestones is the capability to efficiently reject backgrounds associated with few-GeV bremsstrahlung, by twelve orders of magnitude, while maintaining high efficiency for signal. The primary challenge arises from events with photo-nuclear reactions faking the missing-momentum property of a dark matter signal. We present a methodology developed for the LDMX detector concept that is capable of the required rejection. By employing a detailed Geant4-based model of the detector response, we demonstrate that the sampling calorimetry proposed for LDMX can achieve better than 10⁻¹³ rejection of few-GeV photons. This suggests that the luminosity-limited sensitivity of LDMX can be realized at 4 GeV and higher beam energies
Can tonne-scale direct detection experiments discover nuclear dark matter?
Models of nuclear dark matter propose that the dark sector contains large
composite states consisting of dark nucleons in analogy to Standard Model
nuclei. We examine the direct detection phenomenology of a particular class of
nuclear dark matter model at the current generation of tonne-scale liquid noble
experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark
matter scenario distinctive features arise in the recoil energy spectra due to
the non-point-like nature of the composite dark matter state. We calculate the
number of events required to distinguish these spectra from those of a standard
point-like WIMP state with a decaying exponential recoil spectrum. In the most
favourable regions of nuclear dark matter parameter space, we find that a few
tens of events are needed to distinguish nuclear dark matter from WIMPs at the
level in a single experiment. Given the total exposure time of
DEAP-3600 and XENON1T we find that at best a distinction is
possible by these experiments individually, while sensitivity is
reached for a range of parameters by the combination of the two experiments. We
show that future upgrades of these experiments have potential to distinguish a
large range of nuclear dark matter models from that of a WIMP at greater than
.Comment: 23 pages, 7 multipanel figure
Dark sectors 2016 Workshop: community report
This report, based on the Dark Sectors workshop at SLAC in April 2016,
summarizes the scientific importance of searches for dark sector dark matter
and forces at masses beneath the weak-scale, the status of this broad
international field, the important milestones motivating future exploration,
and promising experimental opportunities to reach these milestones over the
next 5-10 years
Photon-rejection Power of the Light Dark Matter eXperiment in an 8 GeV Beam
The Light Dark Matter eXperiment (LDMX) is an electron-beam fixed-target
experiment designed to achieve comprehensive model independent sensitivity to
dark matter particles in the sub-GeV mass region. An upgrade to the LCLS-II
accelerator will increase the beam energy available to LDMX from 4 to 8 GeV.
Using detailed GEANT4-based simulations, we investigate the effect of the
increased beam energy on the capabilities to separate signal and background,
and demonstrate that the veto methodology developed for 4 GeV successfully
rejects photon-induced backgrounds for at least electrons on
target at 8 GeV.Comment: 28 pages, 20 figures; corrected author lis
- …