94 research outputs found

    Ion mobility mass spectrometry uncovers the impact of the patterning of oppositely charged residues on the conformational distributions of intrinsically disordered proteins

    Get PDF
    The global dimensions and amplitudes of conformational fluctuations of intrinsically disordered proteins are governed, in part, by the linear segregation versus clustering of oppositely charged residues within the primary sequence. Ion mobility-mass spectrometry (IM-MS) affords unique advantages for probing the conformational consequences of the linear patterning of oppositely charged residues because it measures and separates proteins electrosprayed from solution on the basis of charge and shape. Here, we use IM-MS to measure the conformational consequences of charge patterning on the C-terminal intrinsically disordered region (p27 IDR) of the cell cycle inhibitory protein p27Kip1. We report the range of charge states and accompanying collisional cross section distributions for wild-type p27 IDR and two variants with identical amino acid compositions, Îș14 and Îș56, distinguished by the extent of linear mixing versus segregation of oppositely charged residues. Wild-type p27 IDR (Îș31) and Îș14, where the oppositely charged residues are more evenly distributed, exhibit a broad distribution of charge states. This is concordant with high degrees of conformational heterogeneity in solution. By contrast, Îș56 with linear segregation of oppositely charged residues leads to limited conformational heterogeneity and a narrow distribution of charged states. Gas-phase molecular dynamics simulations demonstrate that the interplay between chain solvation and intrachain interactions (self-solvation) leads to conformational distributions that are modulated by salt concentration, with the wild-type sequence showing the most sensitivity to changes in salt concentration. These results suggest that the charge patterning within the wild-type p27 IDR may be optimized to sample both highly solvated and self-solvated conformational states

    Inherited germline TP53 mutation encodes a protein with an aberrant C-terminal motif in a case of pediatric adrenocortical tumor

    Get PDF
    Childhood adrenocortical tumor (ACT), a very rare malignancy, has an annual worldwide incidence of about 0.3 per million children younger than 15 years. The association between inherited germline mutations of the TP53 gene and an increased predisposition to ACT was described in the context of the Li-Fraumeni syndrome. In fact, about two-thirds of children with ACT have a TP53 mutation. However, less than 10% of pediatric ACT cases occur in Li-Fraumeni syndrome, suggesting that inherited low-penetrance TP53 mutations play an important role in pediatric adrenal cortex tumorigenesis. We identified a novel inherited germline TP53 mutation affecting the acceptor splice site at intron 10 in a child with an ACT and no family history of cancer. The lack of family history of cancer and previous information about the carcinogenic potential of the mutation led us to further characterize it. Bioinformatics analysis showed that the non-natural and highly hydrophobic C-terminal segment of the frame-shifted mutant p53 protein may disrupt its tumor suppressor function by causing misfolding and aggregation. Our findings highlight the clinical and genetic counseling dilemmas that arise when an inherited TP53 mutation is found in a child with ACT without relatives with Li-Fraumeni-component tumors

    Linker histones as liquid-like glue for chromatin

    No full text

    Peptide design and structural characterization of a GPCR loop mimetic

    No full text
    G protein-coupled receptors (GPCRs) control fundamental aspects of human physiology and behaviors. Knowledge of their structures, especially for the loop regions, is limited and has principally been obtained from homology models, mutagenesis data, low resolution structural studies, and high resolution studies of peptide models of receptor segments. We developed an alternate methodology for structurally characterizing GPCR loops, using the human S1P4 first extracellular loop (E1) as a model system. This methodology uses computational peptide designs based on transmembrane domain (TM) model structures in combination with CD and NMR spectroscopy. The characterized peptides contain segments that mimic the self-assembling extracellular ends of TM 2 and TM 3 separated by E1, including residues R3.28(121) and E3.29(122) that are required for sphingosine 1-phosphate (S1P) binding and receptor activation in the S1P4 receptor. The S1P4 loop mimetic peptide interacted specifically with an S1P headgroup analog, O-phosphoethanolamine (PEA), as evidenced by PEA-induced perturbation of disulfide cross-linked coiled-coil first extracellular loop mimetic (CCE1a) 1H and 15N backbone amide chemical shifts. CCE1a was capable of weakly binding PEA near biologically relevant residues R29 and E30, which correspond to R3.28 and E3.29 in the full-length S1P4 receptor, confirming that it has adopted a biologically relevant conformation. We propose that the combination of coiled-coil TM replacement and conformational stabilization with an interhelical disulfide bond is a general design strategy that promotes native-like structure for loops derived from GPCRs. © 2007 Wiley Periodicals, Inc
    • 

    corecore