29 research outputs found

    Predicting failure: acoustic emission of berlinite under compression.

    Get PDF
    Acoustic emission has been measured and statistical characteristics analyzed during the stress-induced collapse of porous berlinite, AlPO4, containing up to 50 vol porosity. Stress collapse occurs in a series of individual events (avalanches), and each avalanche leads to a jerk in sample compression with corresponding acoustic emission (AE) signals. The distribution of AE avalanche energies can be approximately described by a power law p(E)dE = E(-Īµ)dE (Īµ ~ 1.8) over a large stress interval. We observed several collapse mechanisms whereby less porous minerals show the superposition of independent jerks, which were not related to the major collapse at the failure stress. In highly porous berlinite (40 and 50) an increase of energy emission occurred near the failure point. In contrast, the less porous samples did not show such an increase in energy emission. Instead, in the near vicinity of the main failure point they showed a reduction in the energy exponent to ~ 1.4, which is consistent with the value reported for compressed porous systems displaying critical behavior. This suggests that a critical avalanche regime with a lack of precursor events occurs. In this case, all preceding large events were 'false alarms' and unrelated to the main failure event. Our results identify a method to use pico-seismicity detection of foreshocks to warn of mine collapse before the main failure (the collapse) occurs, which can be applied to highly porous materials only

    Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites

    Get PDF
    This paper presents the mechanical and thermal properties of flax fabric reinforced fly ash based geopolymer composites. Geopolymer composites reinforced with 2.4, 3.0 and 4.1 wt% woven flax fabric in various layers were fabricated using a hand lay-up technique and tested for mechanical properties such as flexural strength, flexural modulus, compressive strength, hardness, and fracture toughness. All mechanical properties were improved by increasing the flax fibre contents, and showed superior mechanical properties over a pure geopolymer matrix. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies were carried out to evaluate the composition and fracture surfaces of geopolymer and geopolymer/flax composites. The thermal behaviour of composites was studied by thermogravimetric analysis (TGA) and the results showed significant degradation of flax fibres at 300 Ā°C

    Formation of Nanocrystalline Zeolites in Geopolymer Gels

    No full text

    Nano- and Microporosity in Geopolymer Gels

    No full text
    corecore