14 research outputs found

    A Cytosolic Iron Chaperone that Delivers Iron to Ferritin

    Get PDF
    Ferritins are the main iron storage proteins found in animals, plants and bacteria. The capacity to store iron in ferritin is essential for life in mammals, but the mechanism by which cytosolic iron is delivered to ferritin is unknown. Human ferritins expressed in yeast contain little iron. The human Poly r(C)-Binding Protein 1 (PCBP1) increased the amount of iron loaded into ferritin when expressed in yeast. PCBP1 bound to ferritin in vivo, and bound iron and facilitated iron loading into ferritin in vitro. Depletion of PCBP1 in human cells inhibited ferritin iron loading and increased cytosolic iron pools. Thus, PCBP1 can function as a cytosolic iron chaperone in the delivery of iron to ferritin

    Association of Copper to Riboflavin Binding Protein; Characterization by EPR and XAS

    Get PDF
    The association of copper to Riboflavin Binding Protein (RBP) from egg white has been studied by electron paramagnetic resonance (EPR) and X-ray absorption (XAS) spectroscopies. The type II site contains a mix of copper I and II in an oxygen rich environment

    The Structure and Function of Frataxin

    Get PDF
    Frataxin, a highly conserved protein found in prokaryotes and eukaryotes, is required for efficient regulation of cellular iron homeostasis. Humans with a frataxin deficiency have the cardio- and neurodegenerative disorder Friedreich’s ataxia, commonly resulting from a GAA trinucleotide repeat expansion in the frataxin gene. While frataxin’s specific function remains a point of controversy, a general consensus is the protein assists in controlling cellular iron homeostasis by directly binding iron. This review focuses on the structural and biochemical aspects of iron binding by the frataxin orthologs and outlines molecular attributes that may help explain the protein’s role in different cellular pathways

    Human Frataxin: Iron and Ferrochelatase Binding Surface

    Get PDF
    The coordinated iron structure and ferrochelatase binding surface of human frataxin have been characterized to provide insight into the protein’s ability to serve as the iron chaperone during heme biosynthesis

    Characterization and Structure of a Zn2+ and [2Fe-2S]-containing Copper Chaperone from Archaeoglobus Fulgidus

    Get PDF
    Bacterial CopZ proteins deliver copper to P1B-type Cu+-ATPases that are homologous to the human Wilson and Menkes disease proteins. The genome of the hyperthermophile Archaeoglobus fulgidus encodes a putative CopZ copper chaperone that contains an unusual cysteine rich N-terminal domain of 130 amino acids in addition to a C-terminal copper-binding domain with a conserved CXXC motif. The N-terminal domain (CopZ-NT) is homologous to proteins found only in extremophiles and is the only such protein that is fused to a copper chaperone. Surprisingly, optical, electron paramagnetic resonance, and X-ray absorption spectroscopic data indicate the presence of a [2Fe-2S] cluster in CopZ-NT. The intact CopZ protein binds two copper ions, one in each domain. The 1.8 Å resolution crystal structure of CopZ-NT reveals that the [2Fe-2S] cluster is housed within a novel fold and that the protein also binds a zinc ion at a four cysteine site. CopZ can deliver Cu+ to the A. fulgidus CopA N-terminal metal binding domain and is capable of reducing Cu2+ to Cu+. This unique fusion of a redox-active domain with a CXXC-containing copper chaperone domain is relevant to the evolution of copper homeostatic mechanisms and suggests new models for copper trafficking

    NMR Assignments of a Stable Processing Intermediate of Human Frataxin

    Get PDF
    Frataxin, a nuclear encoded protein targeted to the mitochondrial matrix, has recently been implicated as an iron chaperone that delivers ferrous iron to the iron-sulfur assembly enzyme IscU. During transport across the mitochondrial membrane, the N-terminal mitochondrial targeting sequence of frataxin is cleaved in a two-step process to produce the mature protein found in the matrix, however N-terminal extended forms of the protein have also been observed in vivo. The recent structural characterization studies of the human frataxin ortholog were performed on a truncated variant of the protein. Here we report the NMR spectral assignment of an extended form of the mature human frataxin ortholog as the basis for understanding the role of the N-terminal domain in protein function
    corecore