5 research outputs found

    Primary and commercial AMSCs and commercial BMSCs have similar tropism to glioma conditioned media <i>in vitro</i>, although there is notable variability in the tropism of the primary AMSC lines.

    No full text
    <p>Analysis of individual cell line tumor tropism in a matrigel-coated insert Boyden chamber migration assay; migration for each line was normalized to the serum free media condition. Results are reported as mean ± S.E.M., n = 9. (* represents the statistically significant difference within groups and # represents the statistically significant difference between groups).</p

    Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles as Positive <i>T</i><sub>1</sub> Contrast Agents for Labeling and MRI Tracking of Adipose-Derived Mesenchymal Stem Cells

    No full text
    Mesoporous silica-coated hollow manganese oxide (HMnO@mSiO<sub>2</sub>) nanoparticles were developed as a novel <i>T</i><sub>1</sub> magnetic resonance imaging (MRI) contrast agent. We hypothesized that the mesoporous structure of the nanoparticle shell enables optimal access of water molecules to the magnetic core, and consequently, an effective longitudinal (<i>R</i><sub>1</sub>) relaxation enhancement of water protons, which value was measured to be 0.99 (mM<sup>−1</sup>s<sup>−1</sup>) at 11.7 T. Adipose-derived mesenchymal stem cells (MSCs) were efficiently labeled using electroporation, with much shorter <i>T</i><sub>1</sub> values as compared to direct incubation without electroporation, which was also evidenced by signal enhancement on <i>T</i><sub>1</sub>-weighted MR images in vitro. Intracranial grafting of HMnO@mSiO<sub>2</sub>-labeled MSCs enabled serial MR monitoring of cell transplants over 14 days. These novel nanoparticles may extend the arsenal of currently available nanoparticle MR contrast agents by providing positive contrast on <i>T</i><sub>1</sub>-weighted images at high magnetic field strengths
    corecore