16 research outputs found

    Procalcitonin to Guide Initiation and Duration of Antibiotic Treatment in Acute Respiratory Infections: An Individual Patient Data Meta-Analysis

    Get PDF
    This individual patient data meta-analysis of clinical trials investigating procalcitonin algorithms for antibiotic decision making found no increased risk of death or setting-specific treatment failure but did find significantly lower antibiotic exposure across different acute respiratory infections and clinical setting

    Association of kidney function with effectiveness of procalcitonin-guided antibiotic treatment:A patient-level meta-analysis from randomized controlled trials

    Get PDF
    Patients with impaired kidney function have a significantly slower decrease of procalcitonin (PCT) levels during infection. Our aim was to study PCT-guided antibiotic stewardship and clinical outcomes in patients with impairments of kidney function as assessed by creatinine levels measured upon hospital admission. We pooled and analyzed individual data from 15 randomized controlled trials who were randomly assigned to receive antibiotic therapy based on a PCT-algorithms or based on standard of care. We stratified patients on the initial glomerular filtration rate (GFR, ml/min/1.73 m2) in three groups (GFR >90 [chronic kidney disease; CKD 1], GFR 15-89 [CKD 2-4] and GFR0.05). This individual patient data meta-analysis confirms that the use of PCT in patients with impaired kidney function, as assessed by admission creatinine levels, is associated with shorter antibiotic courses and lower mortality rates

    Economic evaluation of procalcitonin-guided antibiotic therapy in acute respiratory infections: a US health system perspective

    Get PDF
    Background: Whether or not antibiotic stewardship protocols based on procalcitonin levels results in cost savings remains unclear. Herein, our objective was to assess the economic impact of adopting procalcitonin testing among patients with suspected acute respiratory tract infection (ARI) from the perspective of a typical US integrated delivery network (IDN) with a 1,000,000 member catchment area or enrollment. Methods: To conduct an economic evaluation of procalcitonin testing versus usual care we built a cost-impact model based on patient-level meta-analysis data of randomized trials. The meta-analytic data was adapted to the US setting by applying the meta-analytic results to US lengths of stay, costs, and practice patterns. We estimated the annual ARI visit rate for the one million member cohort, by setting (inpatient, ICU, outpatient) and ARI diagnosis. Results: In the inpatient setting, the costs of procalcitonin-guided compared to usual care for the one million member cohort was 2,083,545,comparedto2,083,545, compared to 2,780,322, resulting in net savings of nearly 700,000totheIDNfor2014.IntheICUandoutpatientsettings,savingswere700,000 to the IDN for 2014. In the ICU and outpatient settings, savings were 73,326 and 5,329,824,respectively,summinguptooverallnetsavingsof5,329,824, respectively, summing up to overall net savings of 6,099,927 for the cohort. Results were robust for all ARI diagnoses. For the whole US insured population, procalcitonin-guided care would result in $1.6 billion in savings annually. Conclusions: Our results show substantial savings associated with procalcitonin protocols of ARI across common US treatment settings mainly by direct reduction in unnecessary antibiotic utilization. These results are robust to changes in key parameters, and the savings can be achieved without any negative impact on treatment outcomes

    Procalcitonin-guided Antibiotic Treatment in Patients With Positive Blood Cultures: A Patient-level Meta-analysis of Randomized Trials

    No full text
    BACKGROUND: Whether procalcitonin (PCT)-guided antibiotic management in patients with positive blood cultures is safe remains understudied. We performed a patient-level meta-analysis to investigate effects of PCT-guided antibiotic management in patients with bacteremia. METHODS: We extracted and analyzed individual data of 523 patients with positive blood cultures included in 13 trials, in which patients were randomly assigned to receive antibiotics based on PCT levels (PCT group) or a control group. The main efficacy endpoint was duration of antibiotic treatment. The main safety endpoint was mortality within 30 days. RESULTS: Mean duration of antibiotic therapy was significantly shorter for 253 patients who received PCT-guided treatment than for 270 control patients (-2.86 days [95% confidence interval [CI], -4.88 to -.84]; P = .006). Mortality was similar in both arms (16.6% vs 20.0%; P = .263). In subgroup analyses by type of pathogen, we noted a trend of shorter mean antibiotic durations in the PCT arm for patients infected with gram-positive organisms or Escherichia coli and significantly shorter treatment for subjects with pneumococcal bacteremia. In analysis by site of infection, antibiotic exposure was shortened in PCT subjects with Streptococcus pneumoniae respiratory infection and those with E. coli urogenital infections. CONCLUSIONS: This meta-analysis of patients with bacteremia receiving PCT-guided antibiotic management demonstrates lower antibiotic exposure without an apparent increase in mortality. Few differences were demonstrated in subgroup analysis stratified by type or site of infection but notable for decreased exposure in patients with pneumococcal pneumonia and E. coli urogenital infections

    Duration of antibiotic treatment using procalcitonin-guided treatment algorithms in older patients: a patient-level meta-analysis from randomized controlled trials

    Get PDF
    BACKGROUND: Older patients have a less pronounced immune response to infection, which may also influence infection biomarkers. There is currently insufficient data regarding clinical effects of procalcitonin (PCT) to guide antibiotic treatment in older patients. OBJECTIVE AND DESIGN: We performed an individual patient data meta-analysis to investigate the association of age on effects of PCT-guided antibiotic stewardship regarding antibiotic use and outcome. SUBJECTS AND METHODS: We had access to 9,421 individual infection patients from 28 randomized controlled trials comparing PCT-guided antibiotic therapy (intervention group) or standard care. We stratified patients according to age in four groups (\u3c75 years [n = 7,079], 75-80 years [n = 1,034], 81-85 years [n = 803] and \u3e85 years [n = 505]). The primary endpoint was the duration of antibiotic treatment and the secondary endpoints were 30-day mortality and length of stay. RESULTS: Compared to control patients, mean duration of antibiotic therapy in PCT-guided patients was significantly reduced by 24, 22, 26 and 24% in the four age groups corresponding to adjusted differences in antibiotic days of -1.99 (95% confidence interval [CI] -2.36 to -1.62), -1.98 (95% CI -2.94 to -1.02), -2.20 (95% CI -3.15 to -1.25) and - 2.10 (95% CI -3.29 to -0.91) with no differences among age groups. There was no increase in the risk for mortality in any of the age groups. Effects were similar in subgroups by infection type, blood culture result and clinical setting (P interaction \u3e0.05). CONCLUSIONS: This large individual patient data meta-analysis confirms that, similar to younger patients, PCT-guided antibiotic treatment in older patients is associated with significantly reduced antibiotic exposures and no increase in mortality

    Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections

    No full text
    BACKGROUND: Acute respiratory infections (ARIs) comprise of a large and heterogeneous group of infections including bacterial, viral, and other aetiologies. In recent years, procalcitonin (PCT), a blood marker for bacterial infections, has emerged as a promising tool to improve decisions about antibiotic therapy (PCT-guided antibiotic therapy). Several randomised controlled trials (RCTs) have demonstrated the feasibility of using procalcitonin for starting and stopping antibiotics in different patient populations with ARIs and different settings ranging from primary care settings to emergency departments, hospital wards, and intensive care units. However, the effect of using procalcitonin on clinical outcomes is unclear. This is an update of a Cochrane review and individual participant data meta-analysis first published in 2012 designed to look at the safety of PCT-guided antibiotic stewardship. OBJECTIVES: The aim of this systematic review based on individual participant data was to assess the safety and efficacy of using procalcitonin for starting or stopping antibiotics over a large range of patients with varying severity of ARIs and from different clinical settings. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), which contains the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE, and Embase, in February 2017, to identify suitable trials. We also searched ClinicalTrials.gov to identify ongoing trials in April 2017. SELECTION CRITERIA: We included RCTs of adult participants with ARIs who received an antibiotic treatment either based on a procalcitonin algorithm (PCT-guided antibiotic stewardship algorithm) or usual care. We excluded trials if they focused exclusively on children or used procalcitonin for a purpose other than to guide initiation and duration of antibiotic treatment. DATA COLLECTION AND ANALYSIS: Two teams of review authors independently evaluated the methodology and extracted data from primary studies. The primary endpoints were all-cause mortality and treatment failure at 30 days, for which definitions were harmonised among trials. Secondary endpoints were antibiotic use, antibiotic-related side effects, and length of hospital stay. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) using multivariable hierarchical logistic regression adjusted for age, gender, and clinical diagnosis using a fixed-effect model. The different trials were added as random-effects into the model. We conducted sensitivity analyses stratified by clinical setting and type of ARI. We also performed an aggregate data meta-analysis. MAIN RESULTS: From 32 eligible RCTs including 18 new trials for this 2017 update, we obtained individual participant data from 26 trials including 6708 participants, which we included in the main individual participant data meta-analysis. We did not obtain individual participant data for four trials, and two trials did not include people with confirmed ARIs. According to GRADE, the quality of the evidence was high for the outcomes mortality and antibiotic exposure, and quality was moderate for the outcomes treatment failure and antibiotic-related side effects.Primary endpoints: there were 286 deaths in 3336 procalcitonin-guided participants (8.6%) compared to 336 in 3372 controls (10.0%), resulting in a significantly lower mortality associated with procalcitonin-guided therapy (adjusted OR 0.83, 95% CI 0.70 to 0.99, P = 0.037). We could not estimate mortality in primary care trials because only one death was reported in a control group participant. Treatment failure was not significantly lower in procalcitonin-guided participants (23.0% versus 24.9% in the control group, adjusted OR 0.90, 95% CI 0.80 to 1.01, P = 0.068). Results were similar among subgroups by clinical setting and type of respiratory infection, with no evidence for effect modification (P for interaction > 0.05). Secondary endpoints: procalcitonin guidance was associated with a 2.4-day reduction in antibiotic exposure (5.7 versus 8.1 days, 95% CI -2.71 to -2.15, P < 0.001) and lower risk of antibiotic-related side effects (16.3% versus 22.1%, adjusted OR 0.68, 95% CI 0.57 to 0.82, P < 0.001). Length of hospital stay and intensive care unit stay were similar in both groups. A sensitivity aggregate-data analysis based on all 32 eligible trials showed similar results. AUTHORS' CONCLUSIONS: This updated meta-analysis of individual participant data from 12 countries shows that the use of procalcitonin to guide initiation and duration of antibiotic treatment results in lower risks of mortality, lower antibiotic consumption, and lower risk for antibiotic-related side effects. Results were similar for different clinical settings and types of ARIs, thus supporting the use of procalcitonin in the context of antibiotic stewardship in people with ARIs. Future high-quality research is needed to confirm the results in immunosuppressed patients and patients with non-respiratory infections
    corecore