18 research outputs found

    Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation

    Full text link
    We analyze the microscopic few-body properties of dipolar particles confined in two parallel quasi-one-dimensional harmonic traps. In particular, we show that an adiabatic rotation of the dipole orientation about the trap axes can drive an initially non-localized few-fermion state into a localized state with strong inter-trap pairing. For an instant, non-adiabatic rotation, however, localization is inhibited and a highly excited state is reached. This state may be interpreted as the few-body analog of a super-Tonks-Girardeau state, known from one-dimensional systems with contact interactions

    Signatures of Wigner Localization in Epitaxially Grown Nanowires

    Full text link
    It was predicted by Wigner in 1934 that the electron gas will undergo a transition to a crystallized state when its density is very low. Whereas significant progress has been made towards the detection of electronic Wigner states, their clear and direct experimental verification still remains a challenge. Here we address signatures of Wigner molecule formation in the transport properties of InSb nanowire quantum dot systems, where a few electrons may form localized states depending on the size of the dot (i.e. the electron density). By a configuration interaction approach combined with an appropriate transport formalism, we are able to predict the transport properties of these systems, in excellent agreement with experimental data. We identify specific signatures of Wigner state formation, such as the strong suppression of the antiferromagnetic coupling, and are able to detect the onset of Wigner localization, both experimentally and theoretically, by studying different dot sizes.Comment: 4 pages, 4 figure

    Innovative teacher education through personalised learning: designing teaching and learning scenarios

    Get PDF
    The growing diversity of the student population twinned with a shift towards more learner-centred education provides the impetus to develop innovative teaching approaches. Imagined as personalised learning (PL), this approach argues for greater flexibility for the learner and more opportunities to include students' voice in the design and enactment of learning. This paper distils the learning from the members of the INTERPEARL project consortium including Lithuanian Universities Siauliai University (SU), Vytautas Magnus University (VMU), and Vilnius University (VU) together with their international partners University of Iceland (UI), and University College Cork, Ireland (UCC). The paper is based on the theoretical assumptions of social construction and takes mixed method approach to uncover the learning from implementing a personalised learning process to encourage greater learner agency and co-creation of learning. This paper will introduce the PL framework developed by the INTERPEARL consortium and two related concepts, namely Learning Scenarios and Learning Design. The learning from the implementation of the PL Framework in Iceland, Ireland, and Lithuanian is uncovered, with a methodology of self-study of teaching and teacher education practices (S-STEP), and student-teachers surveys providing a strong rationale for more PL approach

    Thermopower as a tool to investigate many-body effects in quantum systems

    No full text
    Measuring the thermopower of a confined quantum system reveals important information about its excitation spectrum. Our simulations show how this kind of transport spectroscopy is able to extract a clear signal for the onset of Wigner localization in a nanowire segment. This demonstrates that thermopower measurements provide a tool for investigating complex many-body quantum effects, which is less intrusive than the usual charge-stability diagram as no high source-drain bias is required. While the effect is most pronounced for weak tunnel coupling and low temperatures, the excited states also significantly affect the thermopower spectrum at moderate temperature, adding distinct features to the characteristic thermopower lineshape. (C) 2014 AIP Publishing LLC

    Borylated N-heterocyclic carbenes: rearrangement and chemical trapping

    No full text
    This study details attempts to access N-heterocyclic carbenes (NHCs) featuring the diazaborolyl group, {(HCNDipp)2 B}, as one or both of the N-bound substituents, to generate strongly electron-donating and sterically imposing new carbene ligands. Attempts to isolate N-heterocyclic carbenes based around imidazolylidene or related heterocycles, are characterized by facile N-to-C migration of the boryl substituent. In the cases of imidazolium precursors bearing one N-bound diazaborolyl group and one methyl substituent, deprotonation leads to the generation of the target carbenes, which can be characterized in situ by NMR measurements, and trapped by reactions with metal fragments and elemental selenium. The half-lives of the free carbenes at room temperature range from 4-50 h (depending on the pattern of ancillary substituents) with N-to-C2 migration of the boryl function being shown to be the predominant rearrangement pathway. Kinetic studies show this to be a first-order process that occurs with an entropy of activation close to zero. DFT calculations imply that an intramolecular 1,2-shift is mechanistically feasible, with calculated activation energies of the order of 90-100 kJ mol-1 , reflecting the retention of significant aromatic character in the imidazole ring in the transition state. Trapping of the carbene allows for evaluation of steric and electronic properties through systems of the type LAuCl, LRh(CO)2 Cl, and LSe. A highly unsymmetrical (but nonetheless bulky) steric profile and moderately enhanced σ-donor capabilities (compared with IMes) are revealed

    Borylated N-heterocyclic carbenes: rearrangement and chemical trapping

    No full text
    This study details attempts to access N-heterocyclic carbenes (NHCs) featuring the diazaborolyl group, {(HCNDipp)2 B}, as one or both of the N-bound substituents, to generate strongly electron-donating and sterically imposing new carbene ligands. Attempts to isolate N-heterocyclic carbenes based around imidazolylidene or related heterocycles, are characterized by facile N-to-C migration of the boryl substituent. In the cases of imidazolium precursors bearing one N-bound diazaborolyl group and one methyl substituent, deprotonation leads to the generation of the target carbenes, which can be characterized in situ by NMR measurements, and trapped by reactions with metal fragments and elemental selenium. The half-lives of the free carbenes at room temperature range from 4-50 h (depending on the pattern of ancillary substituents) with N-to-C2 migration of the boryl function being shown to be the predominant rearrangement pathway. Kinetic studies show this to be a first-order process that occurs with an entropy of activation close to zero. DFT calculations imply that an intramolecular 1,2-shift is mechanistically feasible, with calculated activation energies of the order of 90-100 kJ mol-1 , reflecting the retention of significant aromatic character in the imidazole ring in the transition state. Trapping of the carbene allows for evaluation of steric and electronic properties through systems of the type LAuCl, LRh(CO)2 Cl, and LSe. A highly unsymmetrical (but nonetheless bulky) steric profile and moderately enhanced σ-donor capabilities (compared with IMes) are revealed

    Synthetic, structural and reaction chemistry of N-heterocyclic germylene and stannylene compounds featuring N-boryl substituents

    No full text
    This study details the syntheses of N-heterocyclic germylenes and stannylenes featuring diazaborolyl groups, {(HCDippN)2B} (Dipp = 2,6-iPr2C6H3), as both of the N-bound substituents, with a view to generating electron rich and sterically protected metal centres. The energies of their key frontier orbitals - the group 14-centred lone pair and orthogonal pπ-orbital (typically the HOMO-2 and LUMO) have been probed by DFT calculations and compared with a related acyclic analogue, revealing (in the case of the stannylenes) a correlation with the measured 119Sn chemical shifts. The reactivity of the germylene systems towards oxygen atom transfer agents has been examined, with 2 : 1 reaction stoichiometries being observed for both Me3NO and pyridine N-oxide, leading to the formation of products thought to be derived from the activation of C-H bonds by a transient first-formed germanone

    Synthetic, structural and reaction chemistry of N-heterocyclic germylene and stannylene compounds featuring N-boryl substituents

    No full text
    This study details the syntheses of N-heterocyclic germylenes and stannylenes featuring diazaborolyl groups, {(HCDippN)2B} (Dipp = 2,6-iPr2C6H3), as both of the N-bound substituents, with a view to generating electron rich and sterically protected metal centres. The energies of their key frontier orbitals - the group 14-centred lone pair and orthogonal pπ-orbital (typically the HOMO-2 and LUMO) have been probed by DFT calculations and compared with a related acyclic analogue, revealing (in the case of the stannylenes) a correlation with the measured 119Sn chemical shifts. The reactivity of the germylene systems towards oxygen atom transfer agents has been examined, with 2 : 1 reaction stoichiometries being observed for both Me3NO and pyridine N-oxide, leading to the formation of products thought to be derived from the activation of C-H bonds by a transient first-formed germanone

    Self-Study Methodology: An Emerging Approach for Practitioner Research in Europe

    Get PDF
    © Springer Nature Singapore Pte Ltd. 2019.This chapter highlights the European contribution to the growing knowledge about self-study methodology. Europe is a patchwork of countries, cultures and languages. Looking at teacher educators in Europe, we see a broad variation in background, tasks and opportunities for professional development and self-study research.In this chapter we firstly map the development of self-study research in Europe which has mainly been the work of individuals and small groups. Then we focus on four countries that are in the forefront: England, Iceland, Ireland and the Netherlands. In all four countries self-study has proved to be a useful and stimulating way to aid the transition from being a teacher - or researcher - to becoming a teacher educator. Self-study methodology not only supported the understanding and development of the teacher education practice, but also led to identity development. Most helpful proved to be working together and mentoring, and sharing results publicly. In this context the role of the biannual S-STEP Castle Conference in England, which offers European self-study researchers to connect with colleagues from North America and Australia, plays an important role
    corecore