63 research outputs found

    Increasing JAK/STAT Signaling Function of Infant CD4+ T Cells during the First Year of Life

    Get PDF
    Most infant deaths occur in the first year of life. Yet, our knowledge of immune development during this period is scarce and derived from cord blood (CB) only. To more effectively combat pediatric diseases, a deeper understanding of the kinetics and the factors that regulate the maturation of immune functions in early life is needed. Increased disease susceptibility of infants is generally attributed to T helper 2-biased immune responses. The differentiation of CD4+ T cells along a specific T helper cell lineage is dependent on the pathogen type, and on costimulatory and cytokine signals provided by antigen-presenting cells. Cytokines also regulate many other aspects of the host immune response. Therefore, toward the goal of increasing our knowledge of early immune development, we defined the temporal development of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling function of CD4+ T cells using cross-sectional blood samples from healthy infants ages 0 (birth) to 14 months. We specifically focused on cytokines important in T cell differentiation (IFN-γ, IL-12, and IL-4) or in T cell survival and expansion (IL-2 and IL-7) in infant CD4+ T cells. Independent of the cytokine tested, JAK/STAT signaling in infant compared to adult CD4+ T cells was impaired at birth, but increased during the first year, with the most pronounced changes occurring in the first 6 months. The relative change in JAK/STAT signaling of infant CD4+ T cells with age was distinct for each cytokine tested. Thus, while about 60% of CB CD4+ T cells could efficiently activate STAT6 in response to IL-4, less than 5% of CB CD4+ T cells were able to activate the JAK/STAT pathway in response to IFN-γ, IL-12 or IL-2. By 4–6 months of age, the activation of the cytokine-specific STAT molecules was comparable to adults in response to IL-4 and IFN-γ, while IL-2- and IL-12-induced STAT activation remained below adult levels even at 1 year. These results suggest that common developmental and cytokine-specific factors regulate the maturation of the JAK/STAT signaling function in CD4+ T cells during the first year of life

    A randomized clinical trial on the effects of progestin contraception in the genital tract of HIV-infected and uninfected women in Lilongwe, Malawi: Addressing evolving research priorities

    Get PDF
    Hormonal contraception is central in the prevention of unintended pregnancy; however there are concerns that certain methods may increase the risk of HIV acquisition and transmission. Hormonal contraceptives may modify the genital mucosa in several ways, however the mechanisms are incompletely understood. Few studies have examined genital HIV shedding prospectively before and after initiation of hormonal contraception. The effects of hormonal contraception on genital HIV shedding in the setting of antiretroviral therapy (ART) are also unknown. We designed a pilot clinical trial in which HIV-infected and uninfected women were randomized to either depot medroxyprogesterone acetate (DMPA) injectable or levonorgestrel (LNG) implant in Lilongwe, Malawi. The objectives were to: 1) assess the effect and compare the impact of type of progestin contraception (injectable versus implant) on HIV genital shedding among HIV-infected women, 2) assess the effect and compare the impact of type of progestin contraception on inflammatory/immune markers in the genital tract of both HIV-infected and uninfected women, and 3) assess the interaction of progestin contraception and ART by examining contraceptive efficacy and ART efficacy. An additional study aim was to determine the feasibility and need for a larger study of determinants of HIV transmissibility and acquisition

    Of Mice and Monkeys: Can Animal Models Be Utilized to Study Neurological Consequences of Pediatric HIV-1 Infection?

    Get PDF
    Pediatric human immunodeficiency virus (HIV-1) infection remains a global health crisis. Children are much more susceptible to HIV-1 neurological impairments than adults, which can be exacerbated by coinfections. Neurological characteristics of pediatric HIV-1 infection suggest dysfunction in the frontal cortex as well as the hippocampus; limited MRI data indicate global cerebral atrophy, and pathological data suggest accelerated neuronal apoptosis in the cortex. An obstacle to pediatric HIV-1 research is a human representative model system. Host-species specificity of HIV-1 limits the ability to model neurological consequences of pediatric HIV-1 infection in animals. Several models have been proposed including neonatal intracranial injections of HIV-1 viral proteins in rats and perinatal simian immunodeficiency virus (SIV) infection of infant macaques. Nonhuman primate models recapitulate the complexity of pediatric HIV-1, neuropathogenesis while rodent models are able to elucidate the role specific viral proteins exert on neurodevelopment. Nonhuman primate models show similar behavioral and neuropathological characteristics to pediatric HIV-1 infection and offer a stage to investigate early viral mechanisms, latency reservoirs, and therapeutic interventions. Here we review the relative strengths and limitations of pediatric HIV-1 model systems

    Vaccine-Elicited Mucosal and Systemic Antibody Responses Are Associated with Reduced Simian Immunodeficiency Viremia in Infant Rhesus Macaques

    Get PDF
    ABSTRACT Despite significant progress in reducing peripartum mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) with antiretroviral therapy (ART), continued access to ART throughout the breastfeeding period is still a limiting factor, and breast milk exposure to HIV accounts for up to 44% of MTCT. As abstinence from breastfeeding is not recommended, alternative means are needed to prevent MTCT of HIV. We have previously shown that oral vaccination at birth with live attenuated Mycobacterium tuberculosis strains expressing simian immunodeficiency virus (SIV) genes safely induces persistent SIV-specific cellular and humoral immune responses both systemically and at the oral and intestinal mucosa. Here, we tested the ability of oral M. tuberculosis vaccine strains expressing SIV Env and Gag proteins, followed by systemic heterologous (MVA-SIV Env/Gag/Pol) boosting, to protect neonatal macaques against oral SIV challenge. While vaccination did not protect infant macaques against oral SIV acquisition, a subset of immunized animals had significantly lower peak viremia which inversely correlated with prechallenge SIV Env-specific salivary and intestinal IgA responses and higher-avidity SIV Env-specific IgG in plasma. These controller animals also maintained CD4 + T cell populations better and showed reduced tissue pathology compared to noncontroller animals. We show that infants vaccinated at birth can develop vaccine-induced SIV-specific IgA and IgG antibodies and cellular immune responses within weeks of life. Our data further suggest that affinity maturation of vaccine-induced plasma antibodies and induction of mucosal IgA responses at potential SIV entry sites are associated with better control of viral replication, thereby likely reducing SIV morbidity. IMPORTANCE Despite significant progress in reducing peripartum MTCT of HIV with ART, continued access to ART throughout the breastfeeding period is still a limiting factor. Breast milk exposure to HIV accounts for up to 44% of MTCT. Alternative measures, in addition to ART, are needed to achieve the goal of an AIDS-free generation. Pediatric HIV vaccines constitute a core component of such efforts. The results of our pediatric vaccine study highlight the potential importance of vaccine-elicited mucosal Env-specific IgA responses in combination with high-avidity systemic Env-specific IgG in protection against oral SIV transmission and control of viral replication in infant macaques. The induction of potent mucosal IgA antibodies by our vaccine is remarkable considering the age-dependent development of mucosal IgA responses postbirth. A deeper understanding of postnatal immune development may inform the design of improved vaccine strategies to enhance systemic and mucosal SIV/HIV antibody responses

    Impact of Poxvirus Vector Priming, Protein Coadministration, and Vaccine Intervals on HIV gp120 Vaccine-Elicited Antibody Magnitude and Function in Infant Macaques

    Get PDF
    ABSTRACT Despite success in reducing vertical HIV transmission by maternal antiretroviral therapy, several obstacles limit its efficacy during breastfeeding, and breast-milk transmission is now the dominant mode of mother-to-child transmission (MTCT) of HIV in infants. Thus, a pediatric vaccine is needed to eradicate oral HIV infections in newborns and infants. Utilizing the infant rhesus macaque model, we compared 3 different vaccine regimens: (i) HIV envelope (Env) protein only, (ii) poxvirus vector (modified vaccinia virus Ankara [MVA])-HIV Env prime and HIV Env boost, and (iii) coadministration of HIV Env and MVA-HIV Env at all time points. The vaccines were administered with an accelerated, 3-week-interval regimen starting at birth for early induction of highly functional HIV Env-specific antibodies. We also tested whether an extended, 6-week immunization interval using the same vaccine regimen as in the coadministration group would enhance the quality of antibody responses. We found that pediatric HIV vaccines administered at birth are effective in inducing HIV Env-specific plasma IgG. The vaccine regimen consisting of only HIV Env protein induced the highest levels of variable region 1 and 2 (V1V2)-specific antibodies and tier 1 neutralizing antibodies, whereas the extended-interval regimen induced both persistent Env-specific systemic IgG and mucosal IgA responses. Antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies in plasma were elicited by all vaccine regimens. These data suggest that infant immunizations beginning at birth are effective for the induction of functional HIV Env-specific antibodies that could potentially protect against breast milk transmission of HIV and set the stage for immunity prior to sexual debut

    Immunologic, Virologic, and Pharmacologic Characterization of the Female Upper Genital Tract in HIV-Infected Women

    Get PDF
    A comparative analysis of cellular and soluble markers of immune activation in HIV-infected women on combination antiretroviral therapy (cART) showed that the upper (UGT) compared to the lower female genital (LGT) tract was characterized by higher frequencies of potential HIV target cells and increased inflammatory molecules. Despite the activated UGT milieu, HIV RNA could not be detected in paired samples of plasma, cervicovaginal (CVL) or endometrial lavage (EML). As ARV concentrations were ≥3 fold higher in the endometrium than the in the lower genital tract, high ARV penetration and/or metabolism may limit viral replication in the UGT

    Biomarkers detected in cord blood predict vaccine responses in young infants

    Get PDF
    Introduction Factors influencing vaccine immune priming in the first year of life involve both innate and adaptive immunity but there are gaps in understanding how these factors sustain vaccine antibody levels in healthy infants. The hypothesis was that bioprofiles associated with B cell survival best predict sustained vaccine IgG levels at one year. Methods Longitudinal study of plasma bioprofiles in 82 term, healthy infants, who received standard recommended immunizations in the United States, with changes in 15 plasma biomarker concentrations and B cell subsets associated with germinal center development monitored at birth, soon after completion of the initial vaccine series at 6 months, and prior to the 12-month vaccinations. Post vaccination antibody IgG levels to Bordetella pertussis, tetanus toxoid, and conjugated Haemophilus influenzae type B (HiB) were outcome measures. Results Using a least absolute shrinkage and selection operator (lasso) regression model, cord blood (CB) plasma IL-2, IL-17A, IL-31, and soluble CD14 (sCD14) were positively associated with pertussis IgG levels at 12 months, while CB plasma concentrations of APRIL and IL-33 were negatively associated. In contrast, CB concentrations of sCD14 and APRIL were positively associated with sustained tetanus IgG levels. A separate cross-sectional analysis of 18 mother/newborn pairs indicated that CB biomarkers were not due to transplacental transfer, but rather due to immune activation at the fetal/maternal interface. Elevated percentages of cord blood switched memory B cells were positively associated with 12-month HiB IgG levels. BAFF concentrations at 6 and 12 months were positively associated with pertussis and HiB IgG levels respectively. Discussion Sustained B cell immunity is highly influenced by early life immune dynamics beginning prior to birth. The findings provide important insights into how germinal center development shapes vaccine responses in healthy infants and provide a foundation for studies of conditions that impair infant immune development

    The interplay between immune maturation, age, chronic viral infection and environment

    Get PDF
    Background The worldwide increase in life expectancy has been associated with an increase in age-related morbidities. The underlying mechanisms resulting in immunosenescence are only incompletely understood. Chronic viral infections, in particular infection with human cytomegalovirus (HCMV), have been suggested as a main driver in immunosenescence. Here, we propose that rhesus macaques could serve as a relevant model to define the impact of chronic viral infections on host immunity in the aging host. We evaluated whether chronic rhesus CMV (RhCMV) infection, similar to HCMV infection in humans, would modulate normal immunological changes in the aging individual by taking advantage of the unique resource of rhesus macaques that were bred and raised to be Specific Pathogen Free (SPF-2) for distinct viruses. Results Our results demonstrate that normal age-related immunological changes in frequencies, activation, maturation, and function of peripheral blood cell lymphocytes in humans occur in a similar manner over the lifespan of rhesus macaques. The comparative analysis of age-matched SPF-2 and non-SPF macaques that were housed under identical conditions revealed distinct differences in certain immune parameters suggesting that chronic pathogen exposure modulated host immune responses. All non-SPF macaques were infected with RhCMV, suggesting that chronic RhCMV infection was a major contributor to altered immune function in non-SPF macaques, although a causative relationship was not established and outside the scope of these studies. Further, we showed that immunological differences between SPF-2 and non-SPF macaques were already apparent in adolescent macaques, potentially predisposing RhCMV-infected animals to age-related pathologies. Conclusions Our data validate rhesus macaques as a relevant animal model to study how chronic viral infections modulate host immunity and impact immunosenescence. Comparative studies in SPF-2 and non-SPF macaques could identify important mechanisms associated with inflammaging and thereby lead to new therapies promoting healthy aging in humans

    Early Post-Vaccination Gene Signatures Correlate With the Magnitude and Function of Vaccine-Induced HIV Envelope-Specific Plasma Antibodies in Infant Rhesus Macaques

    Get PDF
    A better understanding of the impact of early innate immune responses after vaccine priming on vaccine-elicited adaptive immune responses could inform rational design for effective HIV vaccines. The current study compared the whole blood molecular immune signatures of a 3M-052-SE adjuvanted HIV Env protein vaccine to a regimen combining the adjuvanted Env protein with simultaneous administration of a modified Vaccinia Ankara vector expressing HIV Env in infant rhesus macaques at days 0, 1, and 3 post vaccine prime. Both vaccines induced a rapid innate response, evident by elevated inflammatory plasma cytokines and altered gene expression. We identified 25 differentially-expressed genes (DEG) on day 1 compared to day 0 in the HIV protein vaccine group. In contrast, in the group that received both the Env protein and the MVA-Env vaccine only two DEG were identified, implying that the MVA-Env modified the innate response to the adjuvanted protein vaccine. By day 3, only three DEG maintained altered expression, indicative of the transient nature of the innate response. The DEG represented immune pathways associated with complement activation, type I interferon and interleukin signaling, pathogen sensing, and induction of adaptive immunity. DEG expression on day 1 was correlated to Env-specific antibody responses, in particular antibody-dependent cytotoxicity responses at week 34, and Env-specific follicular T helper cells. Results from network analysis supported the interaction of DEG and their proteins in B cell activation. These results emphasize that vaccine-induced HIV-specific antibody responses can be optimized through the modulation of the innate response to the vaccine prime

    Inclusion of Flagellin during Vaccination against Influenza Enhances Recall Responses in Nonhuman Primate Neonates

    Get PDF
    ABSTRACT Influenza virus can cause life-threatening infections in neonates and young infants. Although vaccination is a major countermeasure against influenza, current vaccines are not approved for use in infants less than 6 months of age, in part due to the weak immune response following vaccination. Thus, there is a strong need to develop new vaccines with improved efficacy for this vulnerable population. To address this issue, we established a neonatal African green monkey (AGM) nonhuman primate model that could be used to identify effective influenza vaccine approaches for use in young infants. We assessed the ability of flagellin, a Toll-like receptor 5 (TLR5) agonist, to serve as an effective adjuvant in this at-risk population. Four- to 6-day-old AGMs were primed and boosted with inactivated PR8 influenza virus (IPR8) adjuvanted with either wild-type flagellin or inactive flagellin with a mutation at position 229 (m229), the latter of which is incapable of signaling through TLR5. Increased IgG responses were observed following a boost, as well as at early times after challenge, in infants vaccinated with flagellin-adjuvanted IPR8. Inclusion of flagellin during vaccination also resulted in a significantly increased number of influenza virus-specific T cells following challenge compared to the number in infants vaccinated with the m229 adjuvant. Finally, following challenge infants vaccinated with IPR8 plus flagellin exhibited a reduced pathology in the lungs compared to that in infants that received IPR8 plus m229. This study provides the first evidence of flagellin-mediated enhancement of vaccine responses in nonhuman primate neonates. IMPORTANCE Young infants are particularly susceptible to severe disease as a result of influenza virus infection. Compounding this is the lack of effective vaccines for use in this vulnerable population. Here we describe a vaccine approach that results in improved immune responses and protection in young infants. Incorporation of flagellin during vaccination resulted in increased antibody and T cell responses together with reduced disease following virus infection. These results suggest that flagellin may serve as an effective adjuvant for vaccines targeted to this vulnerable population
    • …
    corecore