21 research outputs found

    Analysis of Integrin α6β4 Function in Breast Carcinoma: A Dissertation

    Get PDF
    The development and survival of multicellular organisms depends upon the ability of cells to move. Embryogenesis, immune surveillance, wound healing, and metastatic disease are all processes that necessitate effective cellular locomotion. Central to the process of cell motility is the family of integrins, transmembrane cell surface receptors that mediate stable adhesions between cells and their extracellular environment. Many human diseases are associated with aberrant integrin function. Carcinoma cells in particular can hijack integrins, harnessing their mechanical and signaling potential to propagate cell invasion and metastatic disease, one example being integrin α6β4. This integrin, often referred to simply as β4, is defined as an adhesion receptor for the laminin family of extracellular matrix proteins. The role of integrin β4 in potentiating carcinoma invasion is well established, during which it serves both a mechanical and signaling function. miRNAs are short non-coding RNAs that regulate gene expression posttranscriptionally, and data describing the role of extracellular stimuli in governing their expression patterns are sparse. This observation coupled to the increasingly significant role of miRNAs in tumorigenesis prompted us to examine their function as downstream effectors of β4, an integrin closely linked to aggressive disease in breast carcinoma. The work presented in this dissertation documents the first example that integrin expression correlates with specific miRNA patterns. Moreover, integrin β4 status in vitro and in vivo is associated with decreased expression of distinct miRNA families in breast cancer, namely miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, with purported roles in cell motility. Another miRNA, miR-29a, is significantly downregulated in response to de novo expression of β4 in a breast carcinoma cell line, and β4-mediated repression of the miRNA is required for invasion. Another major conclusion of this study is that β4 integrin expression and ligation can regulate the expression of SPARC in breast carcinoma cells. These data reveal distinct mechanisms by which β4 promotes SPARC expression, involving both a miR-29a-mediated process and a TOR-dependent translational mechanism. Our observations establish a link between miRNA expression patterns and cell motility downstream of β4 in the context of breast cancer, and uncover a novel effector of β4-mediated invasion

    Integrin beta4 regulates SPARC protein to promote invasion

    No full text
    The alpha6beta4 integrin (referred to as beta4 integrin) is a receptor for laminins that promotes carcinoma invasion through its ability to regulate key signaling pathways and cytoskeletal dynamics. An analysis of published Affymetrix GeneChip data to detect downstream effectors involved in beta4-mediated invasion of breast carcinoma cells identified SPARC, or secreted protein acidic and rich in cysteine. This glycoprotein has been shown to play an important role in matrix remodeling and invasion. Our analysis revealed that manipulation of beta4 integrin expression and signaling impacted SPARC expression and that SPARC facilitates beta4-mediated invasion. Expression of beta4 in beta4-deficient cells reduced the expression of a specific microRNA (miR-29a) that targets SPARC and impedes invasion. In cells that express endogenous beta4, miR-29a expression is low and beta4 ligation facilitates the translation of SPARC through a TOR-dependent mechanism. The results obtained in this study demonstrate that beta4 can regulate SPARC expression and that SPARC is an effector of beta4-mediated invasion. They also highlight a potential role for specific miRNAs in executing the functions of integrins

    Effects of β4 integrin expression on microRNA patterns in breast cancer

    Get PDF
    Summary The integrin α6β4 is defined as an adhesion receptor for laminins. Referred to as ‘β4’, this integrin plays a key role in the progression of various carcinomas through its ability to orchestrate key signal transduction events and promote cell motility. To identify novel downstream effectors of β4 function in breast cancer, microRNAs (miRNAs) were examined because of their extensive links to tumorigenesis and their ability to regulate gene expression globally. Two breast carcinoma cell lines and a collection of invasive breast carcinomas with varying β4 expression were used to assess the effect of this integrin on miRNA expression. A novel miRNA microarray analysis termed quantitative Nuclease Protection Assay (qNPA) revealed that β4 expression can significantly alter miRNA expression and identified two miRNA families, miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, that are consistently downregulated by expression of this integrin. Analysis of published Affymetrix GeneChip data identified 54 common targets of miR-92ab and miR-99ab/100 within the subset of β4-regulated mRNAs, revealing several genes known to be key components of β4-regulated signaling cascades and effectors of cell motility. Gene ontology classification identified an enrichment in genes associated with cell migration within this population. Finally, gene set enrichment analysis of all β4-regulated mRNAs revealed an enrichment in targets belonging to distinct miRNA families, including miR-92ab and others identified by our initial array analyses. The results obtained in this study provide the first example of an integrin globally impacting miRNA expression and provide evidence that select miRNA families collectively target genes important in executing β4-mediated cell motility

    Enzyme-Linked Immunosorbent Assay for Measuring Antibodies to Pneumococcal Polysaccharides for the PNEUMOVAX 23 Vaccine: Assay Operating Characteristics and Correlation to the WHO International Assay

    No full text
    The Merck pneumococcal (Pn) enzyme-linked immunosorbent assays (ELISAs) for measuring antibodies to 12 serotypes (serotypes 1, 3, 4, 6B, 7F, 8, 9V, 12F, 14, 18C, 19F, and 23F) were validated in 1999. Merck Laboratories developed the Pn assays using 10 μg/ml C polysaccharide, 100 μg/ml Pn polysaccharide (PnPs) 25, and 100 μg/ml PnPs 72 for preadsorption of samples, standards, and controls in order to improve the specificity to the Pn serotypes in the vaccine. The Pn assays utilize postimmunization sera obtained from subjects immunized with PNEUMOVAX 23 as standards for measuring immunoglobulin G concentrations in sera obtained from vaccine clinical trials with adults and infants. This material was calibrated to the Pn reference standard serum, 89SF, subjected to the Merck Pn ELISA adsorbants. Comparisons were made between the Merck Pn assay and the international Pn assay, showing moderate agreement between the two assay formats. This work describes the test procedures and operating characteristics of the Merck Pn assays and the results of experiments performed to compare the Merck Pn ELISAs to the international Pn ELISAs
    corecore