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ABSTRACT 

 

The development and survival of multicellular organisms depends upon the ability 

of cells to move.  Embryogenesis, immune surveillance, wound healing, and metastatic 

disease are all processes that necessitate effective cellular locomotion.  Central to the 

process of cell motility is the family of integrins, transmembrane cell surface receptors 

that mediate stable adhesions between cells and their extracellular environment.  Many 

human diseases are associated with aberrant integrin function.  Carcinoma cells in 

particular can hijack integrins, harnessing their mechanical and signaling potential to 

propagate cell invasion and metastatic disease, one example being integrin α6β4.  This 

integrin, often referred to simply as β4, is defined as an adhesion receptor for the laminin 

family of extracellular matrix proteins.  The role of integrin β4 in potentiating carcinoma 

invasion is well established, during which it serves both a mechanical and signaling 

function.  

miRNAs are short non-coding RNAs that regulate gene expression post-

transcriptionally, and data describing the role of extracellular stimuli in governing their 

expression patterns are sparse.  This observation coupled to the increasingly significant 

role of miRNAs in tumorigenesis prompted us to examine their function as downstream 

effectors of β4, an integrin closely linked to aggressive disease in breast carcinoma.  The 

work presented in this dissertation documents the first example that integrin expression 

correlates with specific miRNA patterns.  Moreover, integrin β4 status in vitro and in vivo 

is associated with decreased expression of distinct miRNA families in breast cancer, 
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namely miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, with purported roles in cell 

motility.  Another miRNA, miR-29a, is significantly downregulated in response to de 

novo expression of β4 in a breast carcinoma cell line, and β4-mediated repression of the 

miRNA is required for invasion.  Another major conclusion of this study is that β4 

integrin expression and ligation can regulate the expression of SPARC in breast 

carcinoma cells.  These data reveal distinct mechanisms by which β4 promotes SPARC 

expression, involving both a miR-29a-mediated process and a TOR-dependent 

translational mechanism.  Our observations establish a link between miRNA expression 

patterns and cell motility downstream of β4 in the context of breast cancer, and uncover a 

novel effector of β4-mediated invasion.    
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CHAPTER I  

INTRODUCTION 

 

Cell Motility 

The development and survival of multicellular organisms depends upon the ability 

of cells to move.  Embryogenesis, immune surveillance, wound healing, and metastatic 

disease are all processes that necessitate effective cellular locomotion (1).  Nearly all 

cells accomplish this intricate task by employing similar mechanisms.  In basic terms, 

receptors in cellular protrusions establish connections with extracellular matrix proteins 

at the leading edge of cells.  Stabilization of these adhesions generates traction.  

Contraction of the cell body followed by disassembly of adhesive contacts at the trailing 

edge permits translocation and cell propulsion in the forward direction.  Migration, thus, 

requires coordinated adhesion and detachment of nucleated contacts (2).  

Several adhesive complexes have been implicated in motility, including nascent 

adhesions, focal complexes, and focal adhesions.  Both nascent adhesions and focal 

complexes are small dynamic structures located near the leading edge and mediate 

signals important for actin polymerization (3, 4).  These structures exist transiently and 

are either rapidly disassembled or mature into focal adhesions, large sites of 

mechanotransduction (5).  These sites serve as signaling platforms and establish 

connections to the actin cytoskeleton through associations with structural proteins like 

talin, α -actinin, and vinculin (6).  Focal adhesions are present in both central and 

peripheral regions of the cell at the ends of long actin filament bundles (6).  Formation 
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and turn over of adhesions is mediated by the catalytic activity of enzymes such as focal 

adhesion kinase (FAK) and Src family kinases (SFKs) (6).  Signals from these molecules 

and others converge upon the RhoGTPase family of signaling molecules present in 

protruding motility structures.  These proteins mediate actin polymerization and novel 

adhesion formation (7).  Regulation of cytoskeletal organization and cell morphology is 

coupled to activation of signaling cascades that drive changes in gene expression and cell 

survival.  Central to these processes is the family of transmembrane glycoproteins called 

integrins. 

 

The Integrin Family 

Overview 

Integrins belong to a family of heterodimeric transmembrane cell surface 

receptors that mediate stable adhesions between cells and their extracellular environment.  

They are expressed across metozoa and likely evolved prior to the Cambrian explosion as 

a requirement for multicellularity, permitting adhesion of cells to basement membranes 

essential for the development of multilayered organisms (8, 9).  Their history of 

discovery nearly thirty years ago was protracted by both technical limitations and 

conceptual challenges—cell biologists in search of the fibronectin receptor were 

confounded by our current understanding that integrins bind multiple ligands, and that 

most ligands are recognized by several integrin family members.  Ultimately, the use of 

monoclonal antibodies, affinity chromatography, and crosslinking uncovered this novel 

family of cell surface receptors.  Richard O. Hynes, a British cell biologist at the forefront 
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of these discoveries, coined the term integrin, a name reflecting the role of these integral 

membrane proteins in maintaining the integrity of connections between the cytoskeleton 

and extracellular matrix (9, 10).   

These adhesion receptors link the actin cytoskeleton (with the exception of 

integrin α6β4) to components in the extracellular matrix, including laminin, collagen, 

fibronectin, vitronectin, and fibrinogen (11).  A role for integrins has also been 

established in mediating cell-cell adhesion.  Eighteen α subunits and 8 β subunits have 

been identified in mammalian cells.  Despite the potential for a sizeable number of 

heterodimers, selectivity of many α subunits in their association with a single β subunit 

limits the family of receptors to only 24 unique heterodimeric pairs.  Ligand specificities 

and phenotypes from knockout studies in mice indicate that each integrin has a unique 

nonredundant function (8).  Integrins are composed of one α and one β subunit, both of 

which are single pass transmembrane proteins linked together non-covalently through 

large ectodomains.  Functional studies demonstrate that truncated integrin subunits 

lacking either the transmembrane or cytoplasmic domains still form heterodimers (12).  

Many cytoplasmic domains have alternative splice variants and, with the exception of the 

β4 subunit, all are relatively short (13). 

Structure 

In simple structural terms, integrins consist of a globular extracellular head 

formed by both subunits from which two stalks extend and penetrate the plasma 

membrane.  Both α and β subunits are extensively disulfide bonded.  The ectodomain of 

each subunit is architecturally complex.  At their N-terminus, all α subunits contain seven 
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repeats of cysteine-rich segments folded into a seven-blade β -propeller (14).  This 

domain constitutes the bulk of the α head domain and mediates the essential interface 

with the β subunit (15).  Half of α subunits contain an insert (I) or von Willebrand factor 

A domain, which is positioned within the β -propeller if present (16).  This α I domain 

spans 200 amino acids in length and houses a divalent cation (Mg++) ligated by three 

loops of secondary amino acid structure, which constitute the metal ion-dependent 

adhesion site (MIDAS) (17).  The MIDAS is critical for metal binding and, thus, integrin 

function, as divalent cations are universally required for integrins to bind their cognate 

ligands (15).  C-terminal to the head is the leg of the α subunit composed of three β -

sandwich domains: the thigh constitutes the upper leg, while calf-1 and calf-2 domains 

make up the lower leg.  A small Ca++ binding loop is located between the thigh and calf-1 

domains.  This position is referred to as the genu (French for knee) and is the pivot point 

for α subunit extension (15).   

The β subunits are structurally more complex.  The β head consists of PSI 

(plexin/semaphorin/integrin), hybrid, and β I domains.  The β I domain is situated in the 

PSI domain, which is located within the hybrid domain.  Spanning about 240 amino acids 

in length, this highly conserved β I domain is analogous to α I domain but is composed of 

two additional segments: the specificity-determining loop (SDL) involved in ligand 

binding and an interface domain that interacts with the β-propeller of the α subunit (15).  

The β I domain contains a MIDAS that binds negatively charged residues, which in turn 

bind the Mg++ in the α I domain (17).  Two adjacent metal binding sites termed 

synergistic metal ion binding site (SynMBS) and the adjacent to metal ion-dependent 
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adhesion site (ADMIDAS) are present and both bind Ca++ (15).  C-terminal to the hybrid 

domain is the leg of the β subunit, a cysteine-rich segment containing four integrin 

epidermal growth factor-like (I-EGF) domains, a β-ankle, and a β-tail domain.  The knee 

is located between I-EGF domains 1 and 2. 

The transmembrane domains of integrin subunits are believed to associate via a 

ridge-in-groove packing model involving an α-helical interface in the resting state (15).  

A salt bridge linking the two subunits has also been proposed (18).  Cytoplasmic domains 

are believed to associate very weakly with one another if at all.   

Bidirectional Signaling 

Integrin ectodomains are thought to equilibrate between three conformational 

states: bent conformation with a closed headpiece, intermediate extended conformation 

with a closed headpiece, and extended conformation with an open headpiece.  Such 

conformations roughly correspond to low affinity, primed and activated, and ligand-

bound activated integrin states, respectively (19).  In the closed conformation, the 

ectodomain of the integrin is bent and juxtaposed to the plasma membrane.  This 

confirmation is stabilized tenuously by interactions between the α and β legs, the head 

domain and both lower legs, and the α and β transmembrane domains (17, 20).  

Conformational changes producing destabilization of these interactions can be induced 

upon association of effector molecules, such as talin, with the cytoplasmic tail, which link 

the integrin to the cellular cytoskeleton.  Mutations in the cytotail can also destabilize the 

bent conformation (18, 21-23).  These events cause separation of the legs within the 

transmembrane segment, extension of the head in a switchblade-like motion, and swing-
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out of the hybrid domain (17).  This conformational change primes or activates the 

integrin for ligand binding.  The concept of integrin priming is known as inside-out 

signaling, because intracellular events induce conformational changes of integrin 

ectodomains to facilitate ligand-binding with greater affinity (19).   

In α subunits that express the I domain, this structure functions as the major 

ligand binding domain, while the β I domain regulates ligand-binding activity of the α I 

domain.  In integrins lacking the α I domain, the β I domain MIDAS directly binds the 

ligand.  During cell adhesion or migration, tensile forces transmitted from a ligand-bound 

integrin are resisted by the cytoskeleton and associated adapter molecules bound to the 

cytoplasmic tail.  Such resistance stabilizes the headpiece and favors an extended 

conformation over bent or closed positions (17).  Ligand-binding affinity and 

adhesiveness of integrins are generally enhanced by increasing concentrations of 

extracellular Mn++ and decreasing concentrations of extracellular Ca++ (17).  Binding of 

the large multivalent ligands promotes lateral association of integrin heterodimers into 

oligomers on the cell surface known as clustering.  Close proximity of integrin 

cytoplasmic domains results in kinase recruitment and activation of intracellular signaling 

cascades, often referred to as outside-in signaling (19).  

The bi-directional signaling capacity intrinsic to integrins results in a wide range 

of biological consequences.  For example, inside-out signaling is critical for establishing 

adhesive strength between integrins and their extracellular environment, permitting 

transfer of tensile force required for integrin-mediated cell adhesion and extracellular 

matrix remodeling.  Outside-in signaling, on the other hand, drives activation of signaling 
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cascades involved in cellular processes such as cytoskeletal organization, gene 

expression, and cell differentiation.  Though distinct processes, these two directions of 

integrin signaling are closely linked and often converge upon complex cellular processes, 

a key example being the coordination of cell motility. 

The Cancer Connection 

Integrins regulate cell migration in variety of physiological and pathological 

contexts.  Many diseases, including autoimmune disorders and cancer, are associated 

with aberrant integrin function.  Carcinoma cells in particular can hijack integrins, 

harnessing their mechanical and signaling potential to propagate cell invasion and 

metastatic disease.  In this context, cells can move singularly or as sheets of cells linked 

together by cell adhesion molecules (24).  The morphology of a single migrating cell is 

mesenchymal, arising from a presumed epithelial-to-mesenchymal transition (EMT) 

occurring in response to stimuli from the tumor microenvironment of carcinoma cells.  

Specifically, downregulation of molecules that establish cell-cell adhesions, such as 

cadherins, induces changes in cytoskeletal organization and signaling pathways that 

allow neoplastic cells to dissociate from the primary tumor (1).  

 Dissemination of malignant cells and subsequent metastasis depend upon 

coordination of migratory and proteolytic processes.  Four cell protrusions at the leading 

edge of motile cells have been described: lamellipodia, filipodia, invadopodia, and blebs 

(7).  Tumor cells are unique in their ability to form invadopodia, sites of rapid actin 

polymerization and associated proteins, including Wiskott-Aldrich syndrome proteins 

(WASP), Rho GTPases, SFKs, and the actin nucleating Arp 2/3 complex (6).  Inherent to 
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these actin-rich complexes is the potential to degrade surrounding matrix through 

proteolysis.  Clearly this ability is critical for carcinoma cell invasion through basement 

membranes and stromal tissue and into blood vessels (25).  At the forefront of these 

motility structures, integrins mediate the dynamics of cell morphology and adhesion in 

migrating cells. 

The field of integrin biology has evolved since its inception nearly thirty years 

ago.  Richard O. Hynes was credited with the discovery of integrins despite never 

intending to pursue a scientific career centered on cell adhesion.  Rather, he began his 

research endeavors looking for differences on the cell surface of normal and tumor cells 

(9).  Perhaps appropriately, fruitful extensions of his early work established a critical role 

for these cell surface receptors in promoting tumor progression.  One such example is 

integrin α6β4. 

 

The α6β4 Integrin 

Discovery 

In 1986, an Italian group reported the identification of a tumor associated 

glycoprotein complex termed TSP-180 on the surface of murine lung carcinoma cells that 

correlated with metastatic potential (26).  Antibody characterization of the complex 

subsequently established preferential expression of this protein in malignant tumors 

relative to normal tissue in both humans and mice (27).   

The following year, a group from the Netherlands described a novel noncovalent 

complex of glycoproteins Ic and IIa on the surface of intact platelets and postulated a role 
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for this complex in cell adhesion (28).  The IIa subunit of this complex was ultimately 

determined to be identical to the β subunit of the family of human VLA (very late 

antigen) cell surface receptors (later recognized as integrins) by a group at Harvard (29, 

30), and the complex was designated VLA-6 (31).  Further characterization using 

antibodies to the IIa subunit, which would later come to be called β1, revealed a novel 

binding partner for the Ic subunit (corresponding to α6) of this complex from a mouse 

mammary epithelial tumor (32).  This subunit was termed IcBP (or Ic binding partner) 

and noted to have marked similarities to the extracellular matrix protein laminin (32).  

The IcBP was coined β4, and additional characterization of this novel VLA subunit was 

carried out by the American and Dutch groups, culminating in the first published report 

of the heterodimeric cell surface receptor α6β4 (33).     

By 1989, it became apparent that the metastatic marker TSP-180 identified by 

Falcioni and colleagues bore striking resemblance the newly identified superfamily of 

adhesion receptors called integrins, in particular to the α6β4 integrin.  Collaborative 

efforts confirmed the speculation and established TSP-180 to be the recently identified 

α6β4 integrin (34).  This discovery coincided with an independent publication from a 

group out of California providing evidence of a novel integrin family member on the 

surface of human epithelial cells termed αEβ4 (35).  Thus began a research pursuit 

spanning three decades aimed at further characterizing the adhesion receptor α6β4 

integrin and defining its role in development, homeostasis, and pathology.       
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Structure and Development 

The α6β4 integrin is often referred to simply as β4, since α6 is the only partner 

with which it heterodimerizes.  β4 integrin is conserved across the metazoan kingdom 

and is expressed predominantly in epithelial cells, though reports have identified the 

integrin on fibroblasts, thymocytes, and Schwann cells (36).  β4 integrin is defined as an 

adhesion receptor for the laminin family of extracellular matrix proteins and joins α3β1, 

α6β1, and α7β1 as one of the four commonly known laminin-binding integrins.  α2β1 has 

also been shown to bind laminin despite functioning predominantly as a collagen receptor 

(37).  Though β4 is promiscuous in its association with various laminin isoforms, 

epidermal laminin-332 (previously called laminin-5) in the basement membrane is the 

preferred ligand for the integrin (38).  Integrin biologists established early on that β4 was 

unique among β integrin subunits.  Several defining qualities distinguish β4, including its 

ability to bind keratin intermediate filaments, as well as its unusually long cytoplasmic 

tail.  While β subunit intracellular domains typically consist of 50 amino acids, the β4 

cytoplasmic domain exceeds 1000 amino acids in length.  Two pairs of type III 

fibronectin (FNIII) repeats separated by a connecting segment characterize the 

cytoplasmic tail.  A Na+-Ca++ exchanger (CalX) motif with unknown function is situated 

membrane-proximal to the first FNIII repeat.  These cytoplasmic domains house multiple 

serine, cysteine, and tyrosine residues that are critical for β4 function.   

Expression of β4 has been localized to the basal surface of epithelial cells in 

junctional adhesion complexes called hemidesmosomes (HDs), inert structures that link 

cells through their intermediate filament cytoskeleton to laminins in the basement 
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membrane.  This adhesive function is critical for establishing epithelial integrity, as 

mutational studies and patient case reports link dysfunction of the integrin to pyloric 

atresia associated with the junctional variant of a blistering skin disease called 

epidermolysis bullosa (39).  Knockout studies in mice corroborate these data; pups 

lacking expression of the integrin die shortly after birth due to detachment of the 

epidermis occurring in response to mechanical stress (40, 41).   

Role in Hemidesmosome Organization 

Further investigation has revealed that β4 plays a pivotal role in the organization 

of HDs.  The current model of HD assembly involves an initial dephosphorylation event 

on the β4 cytoplasmic domain by an unknown phosphatase that induces a conformational 

change to expose binding sites in the FNIII repeats (38).  β4 then recruits plectin, which 

associates via its actin binding domain with the first pair of FNIII repeats (42, 43).  

Reinforcement of this connection is accomplished through additional interactions of the 

plectin plakin domain with both the connecting segment and C-terminal end of the β4 

cytoplasmic tail (44).  Bullous pemphigoid (BP) 180 is then recruited and binds laminin 

extracellularly while associating with the third FNIII repeat and plectin intracellularly 

(45).  Finally BP230 binds to both β4 and BP180 (45).  In addition to the connections 

established by the β4 cytoplasmic domain, the ectodomain of α6 interacts with the 

tetraspanin CD151 (46).  This classic or Type I HD, characteristic of basal epidermal 

cells, establishes connections to the intermediate filament system through both BP230 

and plectin (38).  Our understanding of HD organization stems largely from studies 

investigating the molecular consequences of human mutations in genes expressing α6, β4, 
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plectin, and BP180.  Careful dissection of patient phenotypes and in vitro studies have 

established that β4 interaction with plectin is required for proper HD formation, and that 

assembly of these adhesion complexes can occur independently of the natural β4 ligand 

laminin-322 (42, 43, 47-50).    

Role in Carcinoma Invasion 

The process of invasion involves enzymatic degradation of the basement 

membrane followed by cell migration through the unobstructed path, thus the ability to 

migrate is inherent to an invasive carcinoma cell (51).  It has been well established that 

β4 integrin can mediate carcinoma invasion, as exogenous expression of the integrin 

confers an invasive phenotype in both rectal and breast carcinoma cells (52, 53), while 

depletion of the integrin impedes chemoinvasion in metastatic breast carcinoma cells 

(54).  Early studies linking increased expression of β4 to aggressive tumors and poor 

prognosis (27, 55, 56) initially proved puzzling, however, given its established role in 

mediating epithelial integrity coupled to the observation that most carcinomas lack HDs 

(57).  Research during the past decade has explored this paradigm and revealed a novel 

role for the integrin in regulating cytoskeletal dynamics and carcinoma invasion, 

functions dependent upon key post-translational modifications of the β4 cytoplasmic tail.     

Recent studies have explored the mechanism by which β4 transitions from a 

mechanical adhesion device to a signaling competent receptor in motility structures and 

have established a critical role for the phosphorylation of key serine residues.  These 

phosphorylation events can occur in response to stimulation by growth factors, such as 

epidermal growth factor (EGF) or macrophage-stimulating protein (MSP) (58-60).  For 
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example, EGF stimulation of carcinoma cells has been shown to induce protein kinase C 

(PKC)-α-mediated phosphorylation of three serine residues (S1356, S1360, S1364) on 

the β4 cytoplasmic tail, disrupting HDs and releasing the integrin from sites of adhesion 

on the basal surface of epithelial cells (59).  Similar observations have been extended to 

keratinocytes (58, 60).  A recently identified constitutively phosphorylated serine, S1424, 

on the cytoplasmic tail also appears to play a role in the disassembly of HDs (61).  These 

phosphorylation events precede β4 mobilization to the leading edge in lamellae and 

filipodia, where the integrin engages F-actin and promotes migration of carcinoma cells.  

Again, the ability of β4 to promote motility is not unique to carcinoma cells, as 

keratinocytes employ the integrin during migration in wound healing.  The mechanism by 

which β4 engages F-actin, however, remains undefined.  Since the cytoplasmic tail of this 

integrin lacks a consensus actin-binding motif, the interaction is likely indirect and 

involves a linker protein such as plectin (62). 

Biophysical analyses characterizing the microdomains of these motility structures 

reveal β4 residence within tetraspanin-enriched complexes and highlight a role for 

palmitoylation of key cysteine residues in the recruitment of β4 to these compartments in 

the plasma membrane.  Investigation of β4 palmitoylation arose during a study of the 

palmitoylated tetraspanin CD151, which is known to interact closely with β4 and has 

been implicated in the formation of HDs.  Data published from these studies provide 

compelling evidence that palmitoylation of the β4 cytoplasmic tail is critical for 

recruitment of CD151 and β4 to tetraspanin-enriched microdomains and plays a key role 

in promoting cell spreading and signaling (63).  These observations sharply contrast 
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previous reports that β4 palmitoylation recruits the integrin to lipid rafts (64).  

Localization of β4 within these tetraspanin webs (65) likely augments its signaling 

function through close proximity to other palmitoylated signaling molecules.  

Mobilization of β4 to motility structures precedes initiation of signaling events 

that occur in response to ligand binding and association with other growth factor 

receptors.  As aforementioned, the unusually long cytoplasmic domain of β4 integrin 

distinguishes it among integrins, prompting curiosity as to its biological role.  Clearly one 

function involves its ability to serve as a signaling platform, initiating various signaling 

cascades that mediate chemotactic responses involved both in maintaining normal tissue 

homeostasis, such as in wound healing, as well as in promoting carcinoma cell motility 

during tumor progression.  At the nexus of these intracellular signaling events is 

phosphatidolinosital-3 kinase (PI3K), the most critical mediator of β4-regulated 

carcinoma invasion.  Much effort has been invested in defining the mechanisms by which 

this lipid kinase orchestrates signaling events downstream of the integrin, culminating in 

the identification of key tyrosine residues on the β4 cytoplasmic tail essential for 

executing its function.  Specifically, six tyrosine residues (Y1257, Y1422, Y1440, 

Y1494, Y1526 and Y1642) have been reported to participate in β4-mediated signaling 

events (38, 66).  Tyrosine 1494 has emerged as the master regulator of β4 

phosphorylation and signaling, as mutational analyses have demonstrated that 

phenylalanine substitution at this site reduces overall tyrosine phosphorylation and 

impedes β4-mediated functions, including carcinoma cell survival, migration and 

invasion, as well as anchorage independent growth, tumor development, and 
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angiogenesis (67, 68).  Mechanistic work revealed that Y1494 is required for 

phosphorylation of the insulin receptor substrate 2 (IRS-2), which subsequently binds to 

the p85 regulatory subunit of PI3K and activates signaling in response to β4 ligation (67).  

Furthermore, this tyrosine residue is located within a consensus binding motif for the 

SH2 domain of tyrosine phosphatase SHP-2, which binds β4 and activates SFKs 

upstream of PI3K, events that are also required for the invasive phenotype of carcinoma 

cells (69-71).   

The role of targets downstream of PI3K in promoting carcinoma invasion has 

been well established.  The pioneering study establishing that β4 signals through this 

pathway also identified a positive role for the Rho GTPase Rac downstream of PI3K in 

chemoinvasion (53).  This small G protein has also been shown to regulate the migratory 

behavior of keratinocytes (50).  Subsequent studies characterized the functions of distinct 

Akt isoforms, highlighting a role for Akt2 in promoting carcinoma motility (72, 73).  

Extensions of this work have investigated various NFAT (nuclear factor of activated T 

cells) family members and defined roles for both NFAT1 and NFAT5 in promoting 

carcinoma invasion, in part through increased transcription of motility factors 

autotaxin/ENPP2 and S100A4/metastatin (72-77). 

Other β4-mediated signaling molecules facilitate carcinoma invasion 

independently of the PI3K cascade.  Specifically, β4 promotes the formation of lamellae 

and cell motility in carcinoma cells through inhibition of intracellular cAMP levels, 

which are repressed by a cAMP-specific phosphodiesterase (78).  A related study also 

demonstrated a role for cAMP metabolism in the RhoA-mediated cell motility 
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downstream of β4 occurring independently of Rho GTPase family member Rac1 (79).  

Finally, MSP-dependent phosphorylation of the β4 cytoplasmic tail has been shown to 

induce p38 and NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) 

signaling to promote wound healing in keratinocytes (58).  Though these studies were 

conducted using immortalized skin cells, it is feasible that this mechanism of cell motility 

could contribute to the progression of invasive carcinomas. 

In addition to its regulation of pro-invasive factors, β4 has also been shown to 

directly transmit mechanical forces from the acto-myosin system that can presumably 

propel carcinoma cells during the invasive process (80).  Using traction force detection 

assays, Rabinovitz et al. demonstrated that the integrin transmits forces on either laminin-

111 or antibody to the α6 subunit.  Compression forces generated by the integrin remodel 

the basement membrane, a process dependent upon activation of both PI3K and RhoA; 

these two signaling pathways have been implicated in β4-dependent carcinoma invasion 

(53, 79).  An important conclusion stemming from this work involves the observation 

that β4 can function independently of other integrins to impact extracellular matrix 

organization and drive chemoinvasion. 

Despite an abundance of literature establishing a functional role for the integrin in 

promoting cell motility, β4 is not an island.  Association with growth factor receptors is 

believed to augment β4-mediated signaling and carcinoma invasion.  Initial reports 

documenting β4 interaction with growth factor receptors described cooperative 

associations with members of the EGF family of receptors, including EGFR, ErbB2, and 

ErbB3 (81-84).  Of note, these early studies relied heavily on the results of co-
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immunoprecipitation experiments, which are often difficult to accurately interpret due 

either to the transient nature of β4 interactions with other molecules or the fact that β4 

resides in protein-rich microdomains, and molecules pulled down by such assays may not 

physically interact with the integrin (85).  Nonetheless, Falcioni and colleagues 

demonstrated β4 association with the orphan ErbB2 receptor in breast carcinoma cells, 

and a role was subsequently established for this association in the activation of PI3K 

signaling and carcinoma invasion (83).  It has also been established by various groups 

that interactions between β4 and EGFR promote HD disassembly and β4-mediated 

carcinoma cell invasion, suggesting a role for effector signaling molecules downstream of 

the integrin including Fyn and Rho (81, 86, 87).  β4 association with c-Met has also been 

documented, and data from this work describe a novel role for β4 as a signaling adapter 

molecule that enhances hepatocyte growth factor (HGF)-induced carcinoma invasion 

(88).  The physical interaction between these two cell surface receptors remains 

controversial, however, and more recent evidence suggests that both can facilitate 

carcinoma invasion independently of one another (89).  The first biophysical evidence 

linking β4 to a growth factor receptor arose from investigation of human epidermal 

wound healing as briefly described above, in which MSP stimulation of Ron was shown 

to induce PI3K-mediated phosphorylation of both Ron and the β4 cytoplasmic tail.  

These phosphorylation events in turn generate binding sites that permit formation of a 

heterotrimeric complex in which β4 associates with Ron presumably via 14-3-3 proteins.  

Formation of this complex displaces β4 from HDs to lamellae and facilitates keratinocyte 

migration and wound closure (58).  Although these studies were not conducted in a 
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cancer model, such interactions parallel events observed in carcinoma cells with respect 

to growth factor-induced disassembly of HDs and relocalization of β4 to motility 

structures at the leading edge.  Similar mechanisms could, thus, be at play in the 

progression of invasive carcinoma cells. 

Trafficking 

Integrin trafficking plays a critical role in chemoinvasion, as well as cell adhesion, 

spreading, and migration (90).  This process is characterized by integrin delivery to the 

cell surface, receptor internalization, and recycling of the internalized integrin.  As such, 

this cycle mediates disassembly of adhesive complexes, matrix turnover, and the 

formation of new focal contacts on the leading edge of migrating cells (90).  Little is 

known about β4 trafficking, though studies conducted during the past decade have shed 

some light on the subject.  One group reported that hypoxia promotes the invasion of 

breast carcinoma cells through stabilization of microtubules and increased trafficking of 

β4 to the cell surface, a process mediated by small G protein Rab family member Rab-11 

(91).  Another group demonstrated that arrestin family member ARRDC3 interacts with 

the β4 subunit to induce integrin internalization, ubiquitination, and subsequent 

degradation (92).  Moreover, expression of ARRDC3 is downregulated in breast 

carcinomas, consistent with the observation that β4 plays a role in promoting aggressive 

disease (92).   

Role in Other Biological Functions 

In addition to its ability to promote cell migration and invasion, β4 has been 

linked to tumor cell survival, anchorage independence, and tumor initiation.  A functional 
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link between the integrin and survival was born from the observation that breast 

carcinoma cells expressing β4 could evade apoptosis under serum- and matrix-

deprivation conditions, and that this survival mechanism was dependent upon β4 

activation of the PI3K signaling pathway (93).  Interestingly, this phenomenon only 

occurs in cells expressing mutant p53, as the wild-type tumor suppressor induces 

caspase-3-dependent cleavage and inactivation of Akt in response to β4 expression and 

ligation (94).  Along these lines, mammalian target of rapamycin (mTOR) has been 

shown to function downstream of PI3K to promote β4-mediated survival via a 

mechanism involving upregulation of vascular endothelial growth factor (VEGF) cap-

dependent translation (95).  A continuation of this work demonstrated that β4 regulates 

tumor cell survival in vivo dependent upon VEGF (96).  Recent data has shown that β4 

upregulates ErbB3 expression and formation of the ErbB2/ErbB3 heterodimer, which is 

required for β4-mediated activation of PI3K and breast carcinoma cell evasion of 

apoptosis (84).  Utilization of three-dimensional model systems has further contributed to 

our understanding of β4 function in carcinoma survival and demonstrated that β4-induced 

polarity of breast carcinoma cells promotes evasion of apoptosis via an NFκB-dependent 

mechanism (97).  An extension of this work uncovered a laminin-332 autocrine loop, by 

which cells secrete their own extracellular matrix protein leading to β4-dependent 

activation of Rac and NFκB that promotes anchorage-independent carcinoma cell 

survival (98). 

Recent attention has been directed toward the ability of β4 to promote tumor 

initiation, a phenomenon studied largely in the context of squamous cell carcinoma.  Data 

19



from a murine model of Ras-driven invasive epidermal carcinoma identified a role for β4 

and laminin-332 in promoting tumor formation (99).  Another murine model using 

targeted expression of β4 to the suprabasal layer of the epidermis demonstrated that the 

integrin suppresses transforming growth factor (TGF)-β-mediated growth inhibition, 

resulting in increased formation of both benign and malignant tumors induced by 

chemical carcinogenesis (100).  These data mesh with observations from mouse models 

of mammary tumorigenesis demonstrating that β4 and downstream effector VEGF can 

promote tumor initiation (96), and that depletion of β4 in a breast carcinoma cell line 

reduces tumor uptake (101).  Moreover, another group established a role for β4 signaling 

in mediating tumor initiation in a mouse model of ErbB2-induced mammary carcinoma 

(102). 

Ligand Independence 

While ligand binding is central to the activation of integrin signaling and 

downstream effects on cell behavior, data from the field provide compelling evidence 

that β4 can function in a ligand-independent manner.  Early studies revealed that 

expression of β4 in a rectal carcinoma cell line endogenously devoid of the integrin 

promotes growth arrest, invasion, and cell spreading independent of adhesion to laminin 

(52, 103).  Furthermore, β4 has been shown to promote migration in a breast carcinoma 

cell line on a collagen matrix (78).  Such studies do not negate the possibility, though, 

that ligation occurs in response to endogenous laminins secreted by carcinoma cells.  

More compelling evidence relies on data generated from carcinoma cells expressing a 

trunctated β4, which lacks the extracellular binding domain but retains signaling capacity 
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and confers an invasive potential equivalent to that of wild-type β4 (88).  Several 

hypotheses have been proposed to explain these observations, including the possibility 

that clustering of β4 cytoplasmic domains initiates signaling or that constitutive 

activation of adhesion-dependent signaling pathways in transformed cells confers a 

survival advantage for tumor cells in the absence of their natural ligand (78, 88, 103, 

104).  

 

microRNAs 

Overview 

In 1993, Victor Ambros identified a defective gene responsible for a mutant 

phenotype known as the “bag of worms” in the nematode worm C. elegans.  The 

unfortunate developmental defect was characterized by the accumulation of fertilized 

eggs that ultimately hatch within the mutant worm.  Surprisingly, the gene did not encode 

a protein but a short RNA named lin-4 that was shown to negatively regulate the 

expression of another gene called lin-14 by binding to the 3’ untranslated region (UTR) 

of its transcript to block translation (105, 106).  Nearly a decade later, the scientific 

community recognized that small snippets of RNA, termed microRNAs (miRNAs), could 

regulate cellular processes, a discovery that transformed our understanding of genetics, 

development, and human disease.    

miRNAs are short single-stranded non-coding RNAs that mediate post-

transcriptional gene expression.  This class of regulatory molecules recognizes and binds 

complementary sequences on target mRNAs to induce transcript degradation or 
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translational inhibition.  Hundreds of miRNAs have been identified and extensive 

research conducted during the past two decades has characterized their biogenesis, 

regulation of target genes, and contributions to disease. 

Biogenesis  

miRNAs may be independent transcriptional entities or located in clusters with 

other miRNAs.  Some may be positioned in the introns of protein coding genes (107) and 

share transcription patterns with their host gene when found in a sense orientation (108, 

109).  miRNAs are transcribed from genomic DNA by RNA polymerase II into a 

precursor that folds back onto itself forming a characteristic stem-loop structure.  Primary 

transcripts of clustered miRNAs contain multiple hairpins.  The double-stranded RNA 

contained in this primary miRNA (pri-miRNA) is recognized by DiGeorge Syndrome 

Critical Region 8 (DGCR8), which associates with the RNase III endonuclease Drosha to 

form the microprocessor complex.  Cleavage two helical turns into the stem releases the 

hairpin from the loose ends of the primary transcript, yielding a precursor miRNA (pre-

miRNA) with a two-nucleotide overhang on the 3’ end (110-112).  Some unconventional 

miRNAs called mirtrons are cleaved directly out of the intron by splicing machinery and 

bypass the microprocessor (113-115).  This pre-miRNA is then exported by the 

nucleocytoplasmic shuttle exportin-5 from the nucleus where the RNase III endonuclease 

Dicer cleaves the loop from the hairpin (116-119).  The resulting double-stranded RNA is 

approximately 22 nucleotides in length and known as the miRNA-miRNA* duplex.  This 

duplex unwinds, and the mature miRNA is loaded into the miRNA-induced silencing 
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complex (miRISC), a multiprotein complex containing members of the Argonaut (Ago) 

family of proteins, while the miRNA* strand is degraded (108).  

Target Gene Regulation 

 miRNAs bind multiple targets, and genes, in turn, can be silenced by multiple 

miRNAs.  Over 500 mature miRNAs have been identified, many of which are grouped 

into families based on their conserved seed region, a sequence of nucleotides (2-7) at the 

5’ end of miRNAs that is most critical for target recognition.  Following maturation, a 

miRNA binds regions in the 3’UTR of target mRNAs complementary to its seed 

sequence.  Recent evidence suggests that rare alternative mechanisms of gene regulation 

do occur and include miRNA binding to the 5’UTR or open reading frame of target genes 

or even directly to DNA to block transcription (120-122).  Moreover, participation of the 

miRNA regions outside of the seed has also been reported to facilitate silencing of target 

genes (123, 124).  Perfect or near perfect complementarity between the miRNA and 

target promotes Ago2-mediated cleavage of the transcript, the predominant mechanism of 

gene silencing by miRNAs in plants.  Most mammalian miRNAs, however, bind 

imperfectly to target genes and induce translational inhibition and mRNA destabilization 

(123, 125). 

Contributions to Tumorigenesis 

 A role for miRNAs in the progression of tumorigenesis has been well established.  

Numerous studies have documented aberrant expression of miRNAs in tumors relative to 

normal tissues (126).  Dysregulation of miRNAs may occur in response to epigenetic 

changes that modify miRNA promoter methylation patterns or genetic alterations such as 

23



chromosomal deletions.  Studies have also identified defects in processing machinery, 

resulting in widespread effects on miRNA expression.  For example, loss of Dicer 

function in breast cancer globally downregulates mature miRNA expression and 

promotes aggressive disease (127).  Many miRNAs have been identified as either 

oncogenes (often referred to as oncomiRs) or tumor suppressors based on their biological 

impact.  For example, members of the miR-200 family of miRNAs have been well 

characterized in this context and are known to be key regulators of the EMT (128), a 

precursor to invasion and metastasis.      

 

Overview and Objectives 

Integrins are key modulators of cell behavior.  They utilize connections with the 

extracellular matrix to communicate information about their microenvironment, thereby 

inducing signal transduction events that modify cytoskeleton dynamics and cell motility.  

The role of integrin β4 in potentiating tumorigenesis is well established, particularly in 

carcinoma invasion.  In this context, transformed epithelial cells infiltrate the basement 

membrane into local surrounding tissue, gaining access to lymph drainage and the 

vascular system.  This process, involving complex interactions between tumor cells and 

the extracellular environment, is a precursor to distant metastasis and patient mortality.  

Integrin β4 plays both a mechanical and signaling role in this capacity.  Studies on breast 

cancer have contributed most significantly to our understanding of how β4 contributes to 

the invasive process, though much remains to be seen.   
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The steps involved in miRNA biogenesis have been well characterized, though far 

less is understood about the processes governing their regulation.  Specifically, data 

describing the role of extracellular stimuli in modifying miRNA expression patterns are 

sparse.  Perhaps the most extensively explored example is the role of TGF-β in promoting 

the interaction of p68-interacting Smad proteins with the endocuclease Drosha to 

facilitate miRNA processing and maturation (129).  Along these lines, establishment of 

cell-cell contacts as measured by increasing confluence of cells in vitro has also been 

shown to enhance Drosha-mediated miRNA processing (130).  These observations 

coupled to the increasingly significant role of miRNAs in tumorigenesis necessitate 

additional investigation into the role of microenvironment in regulating miRNA 

expression and function in the context of cancer. 

Our interest in the ability of integrins to potentiate carcinoma migration and 

invasion in breast cancer prompted us to examine the role of miRNAs as downstream 

effectors of β4, an integrin closely linked to aggressive disease.  The work presented in 

the following chapters explores the role of β4 expression on miRNA patterns in the 

context of breast carcinoma invasion, and reveals a novel effector molecule downstream 

of the integrin. 
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CHAPTER II 

EFFECTS OF β4 INTEGRIN EXPRESSION ON MICRORNA PATTERNS IN 

BREAST CANCER 

 

This chapter represents work submitted as:  

Effects of β4 Integrin Expression on microRNA Patterns in Breast Cancer 

Kristin D. Gerson, V.S.R. Krishna Maddula, Bruce E. Seligmann, Jeffrey R. Shearstone, 

Ashraf Khan, and Arthur M. Mercurio 

 

 

 

 

 

26



Abstract 

The integrin α6β4 is defined as an adhesion receptor for laminins.  Referred to 

simply as ‘β4,’ this integrin plays a key role in the progression of various carcinomas 

through its ability to orchestrate key signal transduction events and promote cell motility.  

To identify novel downstream effectors of β4 function in the context of breast cancer, 

miRNAs were examined because of their extensive links to tumorigenesis and their 

ability to regulate gene expression globally.  Two breast carcinoma cell lines and a 

collection of invasive breast carcinomas with varying β4 expression were used to assess 

the effect of this integrin on miRNA expression.  A novel miRNA microarray analysis 

termed quantitative Nuclease Protection Assay (qNPA) revealed that β4 expression can 

significantly alter miRNA expression and identified two miRNA families, miR-

25/32/92abc/363/363-3p/367 and miR-99ab/100, that are consistently downregulated by 

expression of this integrin.  Analysis of published Affymetrix GeneChip data identified 

54 common targets of miR-92ab and miR-99ab/100 within the subset of β4-regulated 

mRNAs, revealing several genes known to be key components of β4-regulated signaling 

cascades and effectors of cell motility.  Gene ontology classification identified an 

enrichment in genes associated with cell migration within this population.  Finally, gene 

set enrichment analysis of all β4-regulated mRNAs revealed an enrichment in targets 

belonging to distinct miRNA families, including miR-92ab and others identified by our 

initial array analyses.  The results obtained in this study provide the first example of an 

integrin globally impacting miRNA expression and provide evidence that select miRNA 

families collectively target genes important in executing β4-mediated cell migration. 
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Introduction 

Integrins belong to a family of heterodimeric transmembrane cell surface 

receptors composed of α and β subunits that mediate stable adhesions between cells and 

their extracellular environment (131, 132).  The integrin α6β4, referred to as ‘β4 

integrin,’ is an adhesion receptor for all of the known laminins.  In a homeostatic setting, 

β4 links the intermediate cytoskeleton to laminins in the basement membrane through 

structures called hemidesmosomes located on the basal surface of epithelial cells (133, 

134).  The role of this integrin evolves, however, under pathological conditions when β4 

is rendered signaling competent and assumes an active role in initiating various signaling 

cascades and facilitating cell motility.  This role is particularly striking in the context of 

tumorigenesis, where factors in the microenvironment of invasive carcinomas promote 

relocalization of β4 from HDs to the leading edge of cells, permitting its association with 

F-actin in motility structures and conferring a unique signaling potential (58, 85, 86, 135-

137).  Recent work from our laboratory has established an association between β4 and a 

“basal-like” subset of breast carcinomas, in which the expression of this integrin predicts 

decreased time to tumor recurrence and decreased patient survival (138).  β4 regulation of 

the expression and function of various downstream targets underlies the ability of this 

integrin to promote carcinoma progression (53, 63, 78, 79, 85, 98, 102).  miRNAs, 

however, represent a class of molecules that until recently had not yet been implicated in 

executing β4-mediated function.  Work from our laboratory identified a role for miR-29a 

in regulating invasion downstream of this integrin (139). 

miRNAs are non-coding single-stranded RNAs approximately 22 base pairs in 
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length that regulate gene expression through mRNA degradation or translational 

inhibition (108, 123).  In mammalian cells, miRNAs most commonly function by binding 

well-conserved imperfect complementary sequences in the 3’ UTR of their target mRNA 

to block translation (108, 123).  Our work is the only to date that suggests a role for 

integrins in the regulation of this small class of RNAs.  On the basis of our previous 

observations, as well as the growing role of miRNAs in tumorigenesis (140, 141) and 

their ability to regulate gene expression, we explored the effect of β4 integrin on global 

miRNA expression using a novel array approach termed qNPA.  The results obtained in 

this study demonstrate that β4 expression modulates families of miRNAs, and highlight a 

potential role for these miRNAs in executing β4-mediated cell motility. 

 

Results 

β4 status correlates with miRNA expression patterns 

Two breast carcinoma cell lines and a collection of invasive breast carcinomas 

with varying β4 status were examined to assay the effect of this integrin on miRNA 

expression.  MCF10CA1a cells were selected, because they are a highly aggressive breast 

carcinoma cell line in which β4 integrin is endogenously expressed.  Expression of the 

integrin was transiently depleted using siRNA (Fig. 2.1A).  MDA-MB-435 breast 

carcinoma cells, which express α6β1 endogenously but lack α6β4, were also chosen.  

Expression of the β4 subunit results in preferential heterodimerization of the α6 subunit 

with β4 (33, 142).  Stable subclones were generated expressing wild-type β4 (referred to 

as β4 transfectants); mock transfectants were also generated (Fig. 2.1B).  As the final 
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component of our analysis, a subset of breast carcinoma specimens was analyzed to 

substantiate cell line observations and establish a link between β4 and miRNAs in vivo.  

Specifically, twenty invasive ductal breast carcinomas were examined, half of which 

were positive for β4 expression, as established previously in our laboratory (138).  

To assay global miRNA expression, a novel microarray technology termed qNPA 

was utilized.  MCF10CA1a cells transfected with control siRNA or siRNA to β4 were 

collected 72 hours post-transfection and analyzed by qNPA.  Transient depletion of β4 in 

these cells altered the expression of 44 miRNAs (Table S2.1).  Two subclones of the 

MDA-MB-435/β4 transfectants (3A7 and 5B3) and two subclones of the MDA-MB-

435/mock transfectants (6D2 and 6D7) were examined for differential miRNA expression 

by qNPA.  Introduction of β4 into this system changed the expression of 50 miRNAs 

(Table S2.2).  Finally, ten β4 positive and ten β4 negative invasive breast carcinomas 

were also examined, and our analysis identified 74 miRNAs that were differentially 

expressed between tumor subsets (Table S2.3).  Statistical parameters of p-value < 0.05 

and a +/-1.2-fold change cut-off were applied to all array datasets.  The results from the 

three arrays are depicted in heat maps, in which the expression of each miRNA across 

samples was assigned a color value (Fig. 2.2).  The top 30 differentially regulated 

miRNAs from each array are presented in Table 2.1.  All miRNAs are normalized to the 

β4 null sample in each array, such that fold changes reflect the effect of the presence of 

β4 on any given miRNA.  miRNAs are ranked by increasing fold change.  Of particular 

interest, the major effect of β4 on miRNA expression appears to be repressive in nature. 
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β4 inversely correlates with the expression of select miRNA families 

 We next sought to correlate the results of the cell line and tumor analyses.  

miRNAs undergoing significant changes in expression were compared across datasets 

(Fig. 2.3A).  Two miRNAs, miR-100 and miR-1244, were altered in all three arrays.  

While miR-100 is a well-characterized miRNA widely expressed across vertebrates, very 

little is known about miR-1244 (143).  Upon closer examination of the data, we noted 

that several of the differentially regulated miRNAs belonged to common miRNA 

families.  A miRNA family is commonly defined as a group of miRNAs that shares the 

same seed sequence (nucleotides 2-7) and therefore largely overlapping target genes.  

Our observation prompted us to examine the idea that specific miRNA families might be 

influenced by β4 expression.  To address this hypothesis, all miRNA families represented 

in Fig. 2.3A were identified.  We then searched for miRNAs from each family across 

arrays.  A miRNA family was included in the analysis if two or more family members 

appeared in at least two of the three different array comparisons.  Conversely, miRNA 

families were excluded from consideration if the expression of any single family member 

was disconcordant with the expression profile of other family members within or across 

the three different arrays.  The results of our analysis identified seven families of 

miRNAs that changed in at least two of the arrays and two families of miRNAs whose 

expression was altered in all three of the arrays (Fig. 2.3B and Table 2.2).     

miRNA families target common β4-regulated genes involved in cell motility 

 miRNA families miR-25/32/92abc/363/363-3p/367 and miR-99ab/100 were 

identified by all three arrays as miRNA families whose expression are inversely 
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correlated with β4 status.  Specifically, miR-92a and miR-92b as well as miR-99a, miR-

99b, and miR-100 are downregulated in the presence of β4 across systems (Table 2.3).  

To explore the implications of this observation and to validate the physiological 

relevance of these miRNAs downstream of β4, we analyzed the mRNA data from a 

published Affymetrix GeneChip performed using the MDA-MB-435/β4 model system 

(76).  Specifically, we considered the possibility that these two families of miRNAs 

might be working in concert to upregulate the expression of genes important in executing 

β4 function.  To address this idea, we compared miR-92ab and miR-99ab/100 putative 

targets and generated a list of overlapping genes.  We then searched for these common 

genes within β4-regulated mRNAs.  Our analysis identified 54 β4-regulated genes that 

are predicted targets of both miR-92ab and miR-99ab/100 miRNA families, applying a p-

value < 0.05 and a 1.2-fold change cut-off (Table S2.4).  A list of the top 30 genes is 

presented in Table 2.4 and ranked in order of fold change.   

It was immediately apparent that several of these targets play critical roles in 

mediating cell motility, prompting us to speculate that these families of miRNAs 

specifically target genes involved in this biological process.  Applying the AmiGo gene 

ontology classification database v1.8 (144, 145), an enrichment was detected in genes 

associated with the accession term “cell motility” (GO:0048870) within this population 

of genes compared to all β4-upregulated genes using the hypergeometric probability (p = 

0.048).  Six genes were identified and include EPHA3, ABHD2, PTPN11, EFNB2, NF1, 

and CDK6.  Closer analysis uncovered additional genes that have been shown to promote 

cell motility despite having not been picked up by our gene ontology analysis.  These 
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genes include PIK3R3 (146), PPM1D (147), RASGRP3 (148, 149), ADAM19 (150), 

SORBS3 (151, 152), ITSN1 (153), MECP2 (154, 155), VLDLR (156), HIP1 (157), 

PAXIP1 (158), ITGA2 (159), ARFGEF1 (160, 161).   

Interestingly, several genes also play distinct roles in β4-mediated signaling 

cascades, including PIKR3, a regulatory subunit of the PI3K complex, as well as 

PTPN11, the gene encoding SHP-2.  Such observations are intriguing given that β4 

signals through the PI3K signaling cascade to increase cell migration and invasion (53).  

Furthermore, it was recently established that the tyrosine phosphatase SHP-2 binds to the 

cytoplasmic tail of β4 and plays a key role in activating downstream signaling events 

critical for cell invasion (69, 162).  These data provide compelling evidence that β4 

regulation of cell migration is executed in part by miR-92ab and miR-99ab/100 miRNA 

families through upregulation of genes both directly involved in cell migration as well as 

those important for preceding signal transduction events. 

β4-regulated mRNAs are enriched in putative targets of miRNA families 

 To extend our analysis, we next conducted gene set enrichment analyses to 

determine whether β4-regulated mRNAs were enriched for targets belonging to these two 

miRNA families.  A significant enrichment was detected (p = 0.028) for putative miR-

92ab targets in this population of genes; however, our analysis did not identify an 

enrichment for miR-99ab/100 predicted targets (Fig. 4A).  While this finding suggests 

that the miR-99ab/100 family likely does not target a large population of β4-regulated 

genes, it does not negate the possibility that these miRNAs function downstream of β4 to 

regulate the expression of select target genes involved in executing β4 function.  Earlier 
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work published from our laboratory has also established there to be no enrichment for 

predicted targets of miR-93, a miRNA selected as a negative control on the basis that it 

was expressed at robust levels in all samples from the qNPA arrays but did not change in 

response to expression of β4 (139).  As part of this analysis, lists of leading edge genes 

were generated, a compilation of mRNAs that contribute to the detected enrichment for 

miR-92ab (Table S2.5).     

Based on our findings, we were curious to determine whether other predicted 

targets for families of miRNAs were also enriched in this population of β4-regulated 

mRNAs.  To explore this idea using an unbiased approach, we employed the Broad 

Institute’s Molecular Signatures Database (MSigDB) C3:MIR Database, composed of 

gene sets sharing a 3'-UTR microRNA binding motif (163).  Interestingly, a comparison 

of this dataset to our β4-regulated mRNAs identified an enrichment for several of the 

miRNA families depicted in Fig. 2.3B and Table 2.2, including miR-

15abc/16/16abc/195/322/424/497/1907, miR-23abc/23b-3p, miR-27abc/27a-3p, and 

miR-30abcdef/30abe-5p/384-5p (Fig. 2.4B).  While these miRNA families were 

differentially regulated in only two of the three arrays, these data still provide compelling 

evidence that β4 status correlates with expression patterns of these miRNA families and 

suggests a role for them in mediating the expression of β4-regulated genes.  

 

Discussion 

We conclude from this study that integrin expression correlates with specific 

patterns of miRNA expression and that β4 integrin status effects the expression of 
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specific families of miRNAs.  Manipulation of β4 expression in two breast cancer cell 

lines provided in vitro model systems for analysis, while a collection of invasive breast 

carcinoma specimens established an in vivo link to the cell line data.  The novel qNPA 

array technology identified two miRNA families, miR-25/32/92abc/363/363-3p/367 and 

miR-99ab/100, as undergoing repression in the presence of β4 across all systems.  An 

analysis of published Affymetrix GeneChip data (76) identified 54 common putative 

targets of these two miRNA families within β4-regulated genes.  Many of these identified 

genes are established mediators of cell adhesion, cell motility, and signal transduction.  

Statistical analysis established that this population is enriched in genes involved in cell 

migration.  These data reveal previously unrecognized β4 targets, which could contribute 

to the ability of β4 to promote carcinoma progression.  Finally, gene set enrichment 

analysis detected an enrichment in predicted targets of several miRNA families, including 

miR-92ab, within β4-regulated genes, substantiating the physiological relevance of our 

findings with respect to the effect of β4 on the expression of distinct miRNA families.  

Although the fields of integrin and miRNA biology have been extensively linked 

to cancer initiation and progression, the connection between these two disciplines has 

remained elusive.  Our novel observation that a specific integrin correlates with miRNA 

expression has profound implications for development and disease, especially 

tumorigenesis.  Along these lines, tyrosine kinase receptors, such as EGFR, have also 

been shown to regulate miRNA expression (164).  Our data support the hypothesis that 

cells utilize this small class of RNAs to respond to external cues in their 

microenvironment, employing surface receptors like integrins as intermediates in the 
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delivery of key information.  An interesting observation that emerged from the results of 

the miRNA microarray analysis involves the predominantly repressive effect of β4 on 

global miRNA expression.  This is consistent with published data describing global 

downregulation of miRNA expression in cancers (165, 166).  Differential expression of 

the endogenous miRNA processing machinery represents a potential explanation for the 

repressive patterns of miRNA expression that we observed, as recent reports have 

highlighted the importance of miRNA processing genes in the regulation of miRNA 

biogenesis and function (167, 168).  We examined the expression of Dicer, Drosha, 

Ago1, Ago2, and TRPB2 mRNAs between the β4 and mock transfectants using 

Affymetrix GeneChip data but observed no change that could account for the 

downregulated pattern of miRNA expression (data not shown).   

Our observation that family members miR-92a and miR-92b are consistently 

downregulated in the presence β4 in our arrays is interesting considering the defined role 

of miR-92a as an “oncomir” (169).  miR-92a belongs to the miR-17-92 cluster, a group 

of six miRNAs generated from a single polycistronic transcript that includes miR-17, 

miR-18a, miR-19a, miR-20a, miR-19b, and miR-92a.  This cluster confers potent 

oncogenic potential and is overexpressed in a variety of cancers, often the result of 

genomic amplification (169).  These findings are seemingly at odds with our observation 

that miR-92a inversely correlates with the expression of β4, an integrin with a well-

established role in potentiating carcinoma cell migration, invasion, and survival.  Recent 

data, however, has identified a role for miRNAs from this family as tumor suppressors 

(170), highlighting the importance of cellular and molecular context in determining the 

36



role of specific miRNAs in tumorigenesis.  Interestingly, an analysis of the arrays failed 

to identify consistent downregulation of other members from this miRNA cluster with the 

exception of miR-19b, which was repressed in two of the three arrays (data not shown).  

miR-92b, despite sharing the same seed sequence and common putative mRNA targets 

with miR-92a, is transcribed from an independent genomic locus and is less well 

characterized from a functional standpoint.  Its intergenic location near the THBS3 gene, 

which is known to share a common promoter with MTX1, prompted us to examine both 

thrombospondin 3 and metataxin 1 mRNA expression using our Affymetrix GeneChip 

data from the MDA-MB-435/β4 cells.  Conveniently, miR-92b was downregulated in this 

particular miRNA array; however, no detectable changes were observed in the expression 

of either thrombospondin 3 or metataxin 1 mRNA levels in this system (data not shown).  

This finding, along with the paucity of other downregulated miRNAs from the miR-17-

92 cluster, suggest changes in miR-92a and miR-92b expression are not mediated at a 

transcriptional level, rather the presence of this integrin likely affects the stability of these 

previously transcribed miRNAs.  Our hypothesis is intriguing in of light recent data 

linking miRNA decay to changes in cell adhesion (171), as well as the general notion that 

global miRNA expression is typically downregulated in cancer (165, 166).            

The role of miR-99a, miR-99b, and miR-100, the other miRNA family identified 

by our array, in tumorigenesis appears to be controversial.  However, downregulation of 

members of this miRNA family has been linked to breast carcinoma, hepatocellular 

carcinoma, prostate carcinoma, nasopharyngeal carcinoma, oral carcinomas, 

hepatoblastoma, and ovarian carcinoma (172-179).  All three miRNAs are transcribed 
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from independent genomic loci with clustered miRNAs.  miR-99a is co-transcribed with 

let-7c, miR-99b is co-transcribed with let-7e and miR-125a, and miR-100 is an intergenic 

miRNA co-transcribed with let-7a.  Again using the Affymetrix GeneChip data from the 

MDA-MB-435/β4 cells, we detected no change in the expression of genes surrounding 

the miR-100 cluster despite downregulation of miR-100 in this system (data not shown).  

However, we noted that all of the other co-transcribed clustered miRNAs were repressed 

across arrays (Table 2.2).  In fact, let-7a, let-7c, and let-7e belong to the let-

7/98/4458/4500 miRNA family and miR-125a belongs to the miR-125a-5p/125b-

5p/351/670/4319 miRNA family, both of which we identified to be downregulated by β4 

in two of the three arrays (Table 2.2).  Unlike miR-92a and miR-92b, these observations 

suggest a complex transcriptional mechanism that induces repression of miRNAs known 

to be genomically and functionally linked.  This observation provides compelling 

evidence that the relationship between β4 and the expression patterns of these miRNAs is 

biologically driven and highly conserved.  Furthermore, this observation diminishes our 

negative finding that the population of β4-regulated mRNAs does not contain an 

enrichment for miR-99ab/100 targets.  

Our observations that miR-92ab and miR-99ab/100 both target β4-regulated genes 

involved in cell motility and signal transduction suggests a novel miRNA-mediated 

mechanism by which β 4 promotes carcinoma cell migration and invasion.  Moreover, 

these data contribute to our understanding of β4 function in the context of signal 

transduction, implying that this integrin not only activates signaling cascades through 

phosphorylation events but upregulates absolute levels of molecules involved in these 
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complex processes.  Future studies aimed at exploring the mechanism of regulation of 

miR-25/32/92abc/363/363-3p/36 and miR-99ab/100 miRNA families in the presence of 

β4, as well as the role of putative targets in mediating cell motility downstream of this 

integrin, will provide further insight into the role of β4 function in promoting carcinoma 

progression. 

 

Materials and Methods

Cell Lines, Antibodies, and Reagents: MDA-MB-435 cells (180) were obtained from the 

Lombardi Cancer Center (Georgetown University, Washington, DC).  MCF10CA1a cells 

(181) were obtained from the Barbara Ann Karmanos Cancer Institute (Detroit, MI).  

MDA-MB-435 cell lines were maintained in low glucose DMEM medium (Gibco, 

Carlsbad, CA) supplemented with 10 mM HEPES, 5% fetal bovine serum, and 1% 

streptomycin and penicillin.  MCF10CA1a cells were maintained in DMEM/F12 1:1 

medium (Gibco, Carlsbad, CA) supplemented with 10 mM HEPES, 5% horse serum, and 

1% streptomycin and penicillin.  All cell lines were grown at 37°C in an incubator 

supplied with 5% CO2.  MDA-MB-435 mock transfectants (6D2 and 6D7 sublcones) and 

β4 transfectants (3A7 and 5B3 subclones) were generated and characterized as previously 

described (53).  The 505 antibody to β4 used for immunoblotting was produced by our 

laboratory as previously described (182). The antibody to tubulin (Sigma, St. Louis, MO) 

was also used for immunoblotting.  

siRNA Experiments: MCF10CA1a cells were transfected with 20 nM On-TARGETplus 

SMARTpool siRNA targeting β4 (Dharmacon) at 50% confluency using DharmaFECT 4 
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transfection reagent (Dharmacon).  A non-targeting siRNA pool (Dharmacon) was used 

as a control for these experiments.  At 72 h post-transfection, cells were harvested for 

protein as described below. 

Immunoblotting: Cells were solubilized on ice for 10 min in Triton X-100 lysis buffer 

(Boston Bioproducts, Ashland, MA) containing 50 mM Tris buffer, pH 7.4, 150 mM 

NaCl, 5mM EDTA, 1% Triton X-100, and protease inhibitors (Complete mini tab; Roche 

Applied Science, Indianapolis, IN) (Lysis Buffer A).  Nuclei were removed by 

centrifugation at 16,100 × g for 10 min.  Concentrations of total cell lysate were assayed 

by Bradford method.  Lysates (50 µg) were separated by electrophoresis through 10% 

SDS-PAGE and transferred to 0.2 µm nitrocellulose membranes (Bio-Rad, Hercules, 

CA).  Membranes were blocked in 5% nonfat milk in Tris-buffered saline/Tween 20 for 1 

h and blotted with the antibody to β4 (1:4,000) or tubulin (1:10,000) overnight at 4°C.  

Proteins were detected by enhanced chemiluminescence (Pierce, Rockford, IL) after 

incubation for 1 h with horseradish peroxidase-conjugated secondary antibodies. 

Tumor samples: A total of 20 cases of invasive ductal breast carcinomas were gross 

dissected by the Department of Pathology at the University of Massachusetts Medical 

School, Worcester, MA.  Ethics approval was not necessary because samples were 

discarded, anonymous, de-identified breast cancer specimens provided by the UMass 

Cancer Center Tissue Bank, which collects fresh tumor samples under University of 

Massachusetts Medical School IRB exemption (Docket # 12535, approved September 19, 

2011).  β4 expression was assessed as previously described (138).  Formalin-fixed 

paraffin-embedded sections of these tumors were generated for analysis by qNPA. 
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qNPA™ miRNA Microarrays: 

Design: A novel qNPA based miRNA Microarray high throughput platform from High 

Throughput Genomics (HTG Molecular Diagnostics, Inc.; Tuscon, AZ) was used to study 

1050 mature miRNAs in human, rat, and mouse based upon the Sanger miRBase release 

9.1.  The qNPA based miRNA microarrays comprise DNA oligo capture probes that are 

synthesized directly on the slide surface (Roche NimbleGen, Madison, WI) which are 

complementary to, and capture, biotinylated miRNA-specific nuclease protection probes.  

Each microarray slide has 21 synthesized arrays, each representing all of the 1050 

miRNAs plus housekeeper genes, in separate wells in a design that mimics standard SBS 

96-well foot print using ArraySlide 24-4 Frame gasket (The Gel Company, San 

Francisco, CA), permitting 24 samples to be tested per slide.  

Sample preparation: For cell line analysis, cell lysates were prepared at a final 

concentration of 25,000 cells per reaction in 25 µl of Lysis Buffer (HTG).  For formalin-

fixed paraffin-embedded (FFPE) samples, FFPE tissue was scrapped off of slides into a 

clean eppendorf tube.  Tissues were lysed in 100 µl of Lysis Buffer covered with 600 µl 

of Denaturation oil at 95˚C for 15-20 min followed by digestion with 1:20 proteinase K 

(Ambion, Austin, TX).  Proteinase K digested FFPE lysate was distributed into 25 µl 

aliquots for each technical replicate and processed by regular qNPA procedure.  Three 

technical replicate samples were used for assaying miRNA expression. 

qNPA procedure and Quantification: qNPA was performed using 16-28bp 

complementary and 5` biotinylated Nuclease Protection Probes (NPPs) matching all the 
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unique human, rat, and mouse miRNA sequences from miRBase release 9.1.  Nuclease 

Protection Probes were added at a final concentration of 31.5 pM.  Samples were overlaid 

with 70µl of Denaturation Oil (HTG) and heated to 95˚C for 10-15 min followed by 16-

24 h hybridization in a 37˚C incubator to allow formation of NPP-miRNA duplexes.  S1 

nuclease was then added to degrade all non-hybridized NPPs, leaving behind NPP-

miRNA duplexes.  Base hydrolysis treatment of the NPP-miRNA complexes at 95oC 

followed, resulting in dissociation of the duplex, hydrolysis of the target miRNA, and 

free single-stranded NPPs present in amounts stoicheometric to those of miRNA present 

in the sample.  These free single-stranded NPPs were available for capture and detection 

on the array.  Base treatment was followed by neutralization using Neutralization solution 

(HTG) containing 1:200 proteinase K (Ambion).  The resulting qNPA lysate was then 

hybridized to the qNPA miRNA microarrays for 16-24 h in a 50˚C incubator for 

quantification of the NPPs.  After the NPP hybridization, qNPA Microarrays were 

washed rigorously with 1X wash buffer (HTG).  Microarrays were then hybridized with 

Avidin-peroxidase (1:600) and Nimblegen alignment oligos (500 pM) in Detection 

enzyme buffer (HTG) for 45 min at 37˚C.  Microarrays were washed followed by 

addition of TSA-Plus Cy3 reagent in amplification diluent (Perkin Elmer, Waltham, MA) 

for detection.  After a 3-min room temperature incubation, TSA-Plus Cy3 reaction was 

stopped by washing the arrays in wash buffer.  Finally, microarrays were spun dry and 

scanned at 5 µm resolution using a GenePix 4200AL microarray slide scanner (Molecular 

Devices, Sunnyvale, CA).  Probe intensities were extracted from TIFF images using 

NimbleScan 2.5 software (Roche NimbleGen) for further analysis.  
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Statistical Analysis: Microarrays for each sample were performed in triplicate (technical 

replicates).  For each array, human miRNA raw expression values were extracted, 

converted to log base 2, and intra-array miRNA replicates (spot replicates) averaged.  

Arrays were then normalized to one another using the median miRNA expression value 

on each array.  BRB-ArrayTools v4.1.0 was used for all analyses (183).  Differentially 

expressed miRNAs were selected using a random variance t-test p value less than 0.05 

and an absolute fold change greater than 1.2.  miRNAs were eliminated from 

consideration if the average value of both β4 positive and β4 negative samples on a single 

microarray fell below the average background level detected on that particular 

microarray.  Estimates of the false discovery rate (FDR) were made using the method of 

Benjamini and Hochberg (184).  Heat map false-coloring of Figure 2.2 was applied using 

Matrix2png (http://www.chibi.ubc.ca/matrix2png) (185).  miRNA values in each row 

were normalized to have a mean of zero and a variance of one.  Coloring was applied 

linearly to normalized values between the 2nd and 98th percentile, while saturating color 

was applied below the 2nd percentile or above the 98th percentile.  Gene order on the y-

axis is identical to the gene order in Tables S2.1-S2.3. 

Lists of predicted targets of miRNAs used for analyses depicted in Tables 2.4 and 

2.5 and gene set enrichment analyses depicted in Fig. 2.4 were obtained from publicly 

available algorithms TargetScan Human Release 5.1 (http://www.targetscan.org/) and 

miRanda August 2010 Release (http://www.microrna.org/).  Genes involved in cell 

migration (GO:0016477) were identified using the AmiGo gene ontology classification 

database v1.8 (144, 145) available through the Gene Ontology project 

43



(www.geneontology.org).  The hypergeometric probability (www.stattrek.com) was 

measured using a population size of 1487 (upregulated β4 mRNAs), sample size of 54 

(common miR-92ab and miR-99ab/100 targets among β4-regulated mRNAs), successes 

in population of 83 (cell motility genes identified in upregulated β4 mRNAs), and 

successes in sample of 6 (cell motility genes identified in common miR-92ab and miR-

99ab/100 targets among β4-regulated mRNAs).  For miRNA gene set enrichment 

analysis in Fig. 2.4, mRNA expression data generated by Chen et. al. (76) was 

downloaded from the NCBI Gene Expression Omnibus (GEO), series number 

GSE11466.  Affymetrix CEL files were processed with the robust multi-chip average 

(RMA) algorithm (186) using BRB-ArrayTools.  Using total context score, the top 500 

conserved targets for miR-92ab or miR-99ab/100 were compiled into gene set lists.  Log 

base 2 mRNA data was loaded into the Broad Institute’s Gene Set Enrichment Analysis 

(GSEA) software v2.06 (163, 187).  β4 phenotype was compared to mock phenotype by 

first collapsing the dataset to gene symbols and then using a weighted, difference of 

classes metric for ranking genes.  Gene set permutations were performed to generate 

nominal p-values for each miRNA target gene set list.  
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Table 2.1.  Effect of β4 expression on miRNA levels

miRNA Fold Change 
(β4/Mock) miRNA Fold Change 

(siCtrl/siβ4) miRNA Fold Change 
(β4+/β4-)

hsa-miR-29a -5.56 hsa-miR-187 -3.04 hsa-miR-92b -3.02
hsa-miR-886-5p -5.26 hsa-miR-574-5p -2.19 hsa-miR-145 -2.89

hsa-miR-29b -5.26 hsa-miR-146a -2.00 hsa-miR-191 -2.79
hsa-miR-125b -3.03 hsa-miR-216b -1.95 hsa-miR-193b -2.67
hsa-miR-100 -2.94 hsa-miR-127-5p -1.95 hsa-miR-423-3p -2.52

hsa-miR-342-3p -2.70 hsa-miR-516b -1.88 hsa-miR-342-3p -2.40
hsa-miR-22 -2.33 hsa-miR-190 -1.85 hsa-miR-24 -2.37
hsa-miR-27a -2.27 hsa-miR-616 -1.63 hsa-miR-99b -2.37
hsa-miR-23a -2.17 hsa-miR-100 -1.60 hsa-miR-574-3p -2.34
hsa-miR-130a -2.04 hsa-miR-1233 -1.59 hsa-miR-16 -2.30
hsa-miR-15b -2.00 hsa-miR-421 1.61 hsa-miR-27a -2.27
hsa-miR-16 -1.96 hsa-miR-330-3p 1.61 hsa-miR-320a -2.23
hsa-miR-182 -1.92 hsa-miR-105 1.64 hsa-miR-103 -2.22
hsa-miR-24 -1.92 hsa-miR-33b 1.65 hsa-let-7a -2.18
hsa-miR-222 -1.92 hsa-miR-218 1.68 hsa-miR-320b -2.15

hsa-let-7f -1.82 hsa-miR-18a 1.73 hsa-let-7f -2.13
hsa-miR-708 -1.72 hsa-miR-422a 1.75 hsa-miR-199a-5p -2.13
hsa-miR-29c -1.69 hsa-miR-708 1.77 hsa-let-7b -2.03
hsa-miR-92b -1.67 hsa-miR-1284 1.79 hsa-miR-149 -2.02
hsa-miR-185 -1.67 hsa-miR-559 1.81 hsa-miR-1291 -2.01
hsa-miR-30c -1.61 hsa-miR-33a 1.88 hsa-miR-92a -2.00

hsa-miR-1244 -1.61 hsa-miR-331-5p 1.91 hsa-miR-214 -1.96
hsa-miR-151-5p -1.59 hsa-miR-29b 1.92 hsa-miR-93 -1.91
hsa-miR-1260 -1.56 hsa-miR-632 1.93 hsa-miR-143 -1.90
hsa-miR-20b -1.54 hsa-miR-29c 1.96 hsa-miR-1259 -1.88
hsa-miR-30b -1.52 hsa-miR-375 1.96 hsa-miR-193a-5p -1.86
hsa-miR-606 -1.47 hsa-miR-301b 1.97 hsa-miR-200c -1.83

hsa-let-7b -1.47 hsa-miR-891b 2.16 hsa-miR-107 -1.81
hsa-miR-1201 -1.47 hsa-miR-936 2.35 hsa-miR-195 -1.81

hsa-miR-768-3p 1.59 hsa-miR-622 2.76 hsa-miR-650 1.79

MDA-MB-435 MCF10CA1a Tumors
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Table 2.2.  Effect of β4 expression on miRNA families

miRNA Family
Effect of β4 

on 
Expression

MDA-MB-435 MCF10CA1a Tumors

let-7/98/4458/4500  let-7a let-7a
let-7b let-7b
let-7e let-7c
let-7f let-7e

let-7f

miR-15abc/16/16abc/195/322/424/497/1907  miR-15a miR-15a
miR-15b miR-15b
miR-16 miR-16

miR-195

miR-23abc/23b-3p  miR-23a miR-23a
miR-23b miR-23b

miR-27abc/27a-3p  miR-27a miR-27a
miR-27b

miR-30abcdef/30abe-5p/384-5p  miR-30a miR-30a
miR-30b miR-30c
miR-30c miR-30d

miR-25/32/92abc/363/363-3p/367  miR-92b miR-92a miR-92a
miR-92b

miR-99ab/100  miR-100 miR-100 miR-99a
miR-99b
miR-100

miR-125a-5p/125b-5p/351/670/4319  miR-125b miR-125a-5p
miR-125b

miR-221/222/222ab/1928  miR-222 miR-221
miR-222

Differentially Expressed miRNA Family 
Members
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Table 2.3.  Effect of β4 expression on miR-92ab and miR-99ab/100 family members  

miRNA p-value FDR1 siCtrl Average 
Intensity

siβ4 Average 
Intensity

Fold Change 
(siCtrl/siβ4)

hsa-miR-92a 4.87E-02 6.07E-01 14599 21407 -1.47

hsa-miR-100 1.75E-02 5.30E-01 15424 24711 -1.60

miRNA p-value FDR Average β4 
Intensity

Average Mock 
Intensity

Fold Change 
(β4/Mock)

hsa-miR-92b 4.0E-06 3.5E-04 2837 4700 -1.67

hsa-miR-100 5.0E-07 5.9E-05 2625 7732 -2.94

miRNA p-value FDR Average β4+ 
Intensity

Average β4- 
Intensity

Fold Change 
(β4+/β4-)

hsa-miR-92a 1.16E-02 8.31E-02 3498 6989 -2.00
hsa-miR-92b 4.50E-06 1.06E-03 1125 3400 -3.02

hsa-miR-99a 2.72E-02 1.42E-01 393 551 -1.40
hsa-miR-99b 4.65E-04 1.22E-02 926 2190 -2.37
hsa-miR-100 1.74E-02 1.09E-01 272 338 -1.24

1 False Discovery Rate

MCF10CA1a Array

MDA-MB-435 Array

Tumor Array
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Table 2.4.  Predicted targets of miR-92ab and miR-99ab/100 families among β4-regulated genes

Gene ID  p-value FDR1 Average β4 
Intensity

Average Mock 
Intensity

Fold Change 
(β4/Mock)

EPHA3 4.79E-04 1.56E-02 265 104 2.54
GOLGA8A 7.60E-06 1.54E-03 148 65 2.28

ABHD2 4.79E-05 4.13E-03 168 75 2.22
SGCD 7.74E-03 7.84E-02 259 124 2.09
DCP2 3.05E-04 1.19E-02 149 84 1.78

RMND5A 1.37E-03 2.79E-02 108 61 1.76
WWP2 3.37E-03 4.75E-02 377 220 1.71

AMMECR1 1.55E-04 7.88E-03 125 73 1.70
KLHDC3 3.07E-05 3.27E-03 759 461 1.65
PTPN11 1.96E-04 9.26E-03 335 210 1.60

ZC3HAV1 9.30E-03 8.74E-02 168 108 1.56
ZFP106 3.67E-02 2.01E-01 473 310 1.52
CTDSPL 6.60E-05 4.94E-03 419 276 1.51
BAT2L2 2.94E-03 4.40E-02 137 92 1.49
PIK3R3 3.33E-03 4.72E-02 125 84 1.49
ZNF652 6.64E-04 1.88E-02 48 33 1.47
EFNB2 8.31E-03 8.19E-02 70 48 1.46
PPM1D 7.34E-05 5.13E-03 41 28 1.46
SOBP 9.55E-03 8.89E-02 40 28 1.46
NKTR 2.50E-03 4.01E-02 84 59 1.43

FOXO3 2.59E-03 4.11E-02 262 184 1.42
ZNF331 7.34E-05 5.13E-03 64 45 1.42
PKNOX1 1.47E-04 7.69E-03 68 49 1.40
RASGRP3 7.45E-03 7.64E-02 35 25 1.40
ADAM19 1.61E-03 3.08E-02 200 146 1.37

GNS 1.64E-03 3.11E-02 147 107 1.37
MFHAS1 5.10E-03 6.04E-02 213 155 1.37
WDFY3 4.25E-02 2.19E-01 60 43 1.37
WDR37 1.01E-02 9.20E-02 199 145 1.37
SORBS3 4.62E-02 2.29E-01 289 215 1.34

1 False Discovery Rate
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Figure 2.1.  β4 expression in breast carcinoma cell lines.  A, Expression of β4 in total 

cell extract (50 µg) following transient knockdown of β4 at 72 hours post-transfection in 

MCF10CA1a cells.  B, Expression of β4 in total cell extract (50 µg) in MDA-MB-435/β4 

and mock transfectants.  
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Figure 2.2.  β4 correlates with miRNA expression patterns.  A, qNPA microarray was 

performed in triplicate on MCF10CA1a siCtrl cells and MCF10CA1a siβ4 cells at 72 

hours post-transfection.  The heat map depicts the 44 miRNAs undergoing a statistically 

significant change in expression following transient depletion of β4 subunit in this 

system.  B, qNPA microarray was performed in triplicate on two subclones of the MDA-

MB-435/β4 transfectants (3A7 and 5B3), and two subclones of the MDA-MB-435/mock 

transfectants (6D2 and 6D7).  The heat map depicts the 50 miRNAs undergoing a 

statistically significant change in expression following introduction of the β4 subunit into 

this system.  C, qNPA microarray was performed in triplicate on ten β4 positive and ten 

β4 negative invasive breast carcinomas.  The heat map depicts the 74 miRNAs 

differentially expressed between tumor subsets.  For all array analyses, a p-value < 0.05 

and a +/-1.2-fold change cut-off was applied.  Color was assigned to each miRNA based 

on relative expression across samples. 
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Figure 2.3.  β4 inversely correlates with the expression of select miRNA families.  A, 

Venn diagram of overlapping miRNAs that undergo differential expression in response to 

β4 across all three arrays.  B, Venn diagram of overlapping miRNA families that undergo 

differential expression in response to β4 across all three arrays.
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Figure 2.4.  β4-regulated mRNAs are enriched in putative targets of miRNA 

families.  GeneChip derived mRNA levels were ranked from the most upregulated in β4 

transfected cells to the most downregulated (x-axis, 1 to 12,300, respectively).  Red 

shading indicates mRNA is upregulated in β4 transfectants, while blue shading indicates 

mRNA is downregulated.  Each vertical black line represents a miRNA target.  The left-

to-right position of each black line indicates the relative position of the predicted target 

within the rank ordered mRNA list.  A, miR-92ab predicted target gene are enriched 

among mRNAs up-regulated in the β4 transfectants, as illustrated by the increasing 

number of black lines on the left side of each graphic and the positive running enrichment 

scores (ES) marked by the red lines (p = 0.028).  No enrichment was detected for and 

miR-99ab/100.  B, miR-15abc/16/16abc/195/322/424/497/1907 (p = 0.039), miR-

23abc/23b-3p (p = 0.034), miR-27abc/27a-3p ( p = 0.003), and miR-30abcdef/30abe-

5p/384-5p (p = 0.0) predicted target genes are enriched among mRNAs up-regulated in 

the β4 transfectants. 
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Table S2.1.  MCF10CA1a microarray

miRNA p-value FDR siCtrl Average 
Intensity

siβ4 Average 
Intensity

Fold Change 
(siCtrl/siβ4)

hsa-miR-187 1.16E-04 4.00E-02 224 682 -3.04
hsa-miR-574-5p 4.88E-04 1.12E-01 3313 7249 -2.19
hsa-miR-146a 6.25E-03 3.58E-01 5253 10509 -2.00
hsa-miR-216b 2.62E-02 5.30E-01 85 165 -1.95

hsa-miR-127-5p 6.14E-03 3.58E-01 83 162 -1.95
hsa-miR-516b 1.88E-02 5.30E-01 88 165 -1.88
hsa-miR-190 1.53E-02 5.25E-01 2193 4055 -1.85
hsa-miR-616 1.51E-02 5.25E-01 88 144 -1.63
hsa-miR-100 1.75E-02 5.30E-01 15424 24711 -1.60
hsa-miR-1233 2.94E-02 5.69E-01 2034 3227 -1.59
hsa-miR-222 2.20E-02 5.30E-01 16389 25755 -1.57
hsa-miR-1275 3.12E-02 5.69E-01 122 188 -1.55
hsa-miR-637 4.02E-02 5.89E-01 115 177 -1.54
hsa-miR-221 2.58E-02 5.30E-01 14804 22546 -1.52
hsa-miR-31 3.03E-02 5.69E-01 13659 20667 -1.51

hsa-miR-768-5p 3.72E-02 5.89E-01 19319 28784 -1.49
hsa-miR-296-5p 4.98E-02 6.07E-01 11986 17752 -1.48
hsa-miR-1207-5p 4.47E-02 6.07E-01 11006 16274 -1.48

hsa-miR-1244 3.95E-02 5.89E-01 15632 23057 -1.47
hsa-miR-92a 4.87E-02 6.07E-01 14599 21407 -1.47
hsa-miR-194 3.83E-02 5.89E-01 169 113 1.50
hsa-miR-1248 3.96E-02 5.89E-01 7343 4843 1.52

hsa-miR-548c-5p 2.42E-02 5.30E-01 152 98 1.55
hsa-miR-609 3.33E-02 5.88E-01 176 112 1.56
hsa-miR-421 2.42E-02 5.30E-01 486 301 1.61

hsa-miR-330-3p 2.60E-02 5.30E-01 892 553 1.61
hsa-miR-105 3.50E-02 5.89E-01 164 100 1.64
hsa-miR-33b 2.46E-02 5.30E-01 146 88 1.65
hsa-miR-218 1.52E-02 5.25E-01 201 120 1.68
hsa-miR-18a 1.76E-02 5.30E-01 452 261 1.73
hsa-miR-422a 1.17E-02 5.25E-01 296 170 1.75
hsa-miR-708 7.18E-03 3.80E-01 1215 688 1.77
hsa-miR-1284 2.22E-02 5.30E-01 183 103 1.79
hsa-miR-559 9.02E-03 4.43E-01 383 211 1.81
hsa-miR-33a 1.92E-02 5.30E-01 169 89 1.88

hsa-miR-331-5p 3.46E-03 3.36E-01 211 111 1.91
hsa-miR-29b 3.68E-03 3.36E-01 7537 3932 1.92
hsa-miR-632 1.40E-02 5.25E-01 183 95 1.93
hsa-miR-29c 1.24E-02 5.25E-01 409 209 1.96
hsa-miR-375 3.99E-03 3.36E-01 598 305 1.96
hsa-miR-301b 1.80E-03 2.48E-01 183 93 1.97
hsa-miR-891b 4.88E-03 3.36E-01 197 91 2.16
hsa-miR-936 1.43E-03 2.45E-01 483 206 2.35
hsa-miR-622 3.21E-05 2.21E-02 2322 843 2.76
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Table S2.2.  MDA-MB-435 microarray

miRNA p-value FDR Average β4 
Intensity

Average Mock 
Intensity

Fold Change 
(β4/Mock)

hsa-miR-29a <1.0E-07 <1.0E-07 2410 13323 -5.56
hsa-miR-886-5p <1.0E-07 <1.0E-07 201 1074 -5.26

hsa-miR-29b <1.0E-07 <1.0E-07 715 3696 -5.26
hsa-miR-125b 1.0E-07 1.4E-05 722 2187 -3.03
hsa-miR-100 5.0E-07 5.9E-05 2625 7732 -2.94

hsa-miR-342-3p 3.7E-06 3.5E-04 278 749 -2.70
hsa-miR-22 6.5E-06 4.6E-04 424 979 -2.33
hsa-miR-27a 5.5E-05 2.4E-03 3808 8560 -2.27
hsa-miR-23a 1.7E-04 5.7E-03 2331 5060 -2.17
hsa-miR-130a 1.0E-07 1.4E-05 167 342 -2.04
hsa-miR-15b 2.9E-05 1.5E-03 882 1762 -2.00
hsa-miR-16 3.4E-04 1.1E-02 8831 17398 -1.96
hsa-miR-182 2.0E-05 1.1E-03 369 703 -1.92
hsa-miR-24 1.2E-04 4.3E-03 3756 7173 -1.92
hsa-miR-222 8.2E-04 2.2E-02 1163 2254 -1.92

hsa-let-7f 1.9E-03 4.2E-02 4985 9048 -1.82
hsa-miR-708 3.5E-05 1.7E-03 160 277 -1.72
hsa-miR-29c 1.4E-05 8.0E-04 222 380 -1.69
hsa-miR-92b 4.0E-06 3.5E-04 2837 4700 -1.67
hsa-miR-185 1.2E-03 2.9E-02 294 493 -1.67
hsa-miR-30c 2.7E-03 5.6E-02 556 899 -1.61

hsa-miR-1244 8.0E-03 1.3E-01 1375 2226 -1.61
hsa-miR-151-5p 3.6E-03 6.8E-02 304 483 -1.59
hsa-miR-1260 8.6E-05 3.4E-03 452 708 -1.56
hsa-miR-20b 6.0E-04 1.8E-02 301 462 -1.54
hsa-miR-30b 8.7E-03 1.3E-01 304 461 -1.52
hsa-miR-606 7.8E-03 1.3E-01 603 887 -1.47

hsa-let-7b 8.3E-03 1.3E-01 329 484 -1.47
hsa-miR-1201 9.8E-03 1.4E-01 314 459 -1.47
hsa-miR-23b 1.4E-03 3.5E-02 356 519 -1.45

hsa-miR-574-3p 6.8E-04 1.9E-02 1009 1433 -1.43
hsa-let-7a 3.3E-02 2.9E-01 365 520 -1.43

hsa-miR-765 2.5E-03 5.2E-02 214 296 -1.39
hsa-miR-30a 2.1E-02 2.2E-01 327 454 -1.39
hsa-miR-181a 3.4E-02 3.0E-01 1756 2441 -1.39
hsa-miR-345 1.9E-03 4.2E-02 289 396 -1.37
hsa-miR-663b 9.1E-03 1.4E-01 6578 9069 -1.37

hsa-miR-486-5p 2.0E-02 2.2E-01 468 646 -1.37
hsa-miR-19b 2.1E-02 2.2E-01 1675 2304 -1.37
hsa-miR-720 1.7E-02 2.0E-01 1149 1529 -1.33
hsa-miR-1296 2.4E-02 2.3E-01 187 250 -1.33
hsa-miR-15a 1.3E-02 1.7E-01 308 403 -1.32
hsa-miR-27b 1.8E-02 2.1E-01 278 359 -1.30

hsa-let-7e 8.5E-03 1.3E-01 217 276 -1.28
hsa-miR-1234 2.2E-02 2.2E-01 215 275 -1.28

hsa-miR-885-3p 1.3E-02 1.7E-01 225 286 -1.27
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hsa-miR-486-3p 2.0E-02 2.2E-01 336 426 -1.27
hsa-miR-320d 2.0E-02 2.2E-01 268 208 1.28
hsa-miR-320a 2.8E-02 2.6E-01 2036 1503 1.36

hsa-miR-768-3p 1.0E-05 6.6E-04 6480 4072 1.59
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Table S2.3.  Tumor microarray

miRNA p-value FDR
Average β4 

Positive 
Intensity

Average β4 
Negative 
Intensity

Fold Change 
(β4+/β4-)

hsa-miR-92b 4.50E-06 1.06E-03 1125 3400 -3.02
hsa-miR-145 1.47E-05 1.48E-03 2472 7138 -2.89
hsa-miR-191 1.40E-06 9.90E-04 4391 12237 -2.79
hsa-miR-193b 2.32E-04 9.10E-03 2769 7384 -2.67

hsa-miR-423-3p 9.70E-06 1.14E-03 903 2279 -2.52
hsa-miR-342-3p 3.38E-03 3.98E-02 4442 10662 -2.40

hsa-miR-24 1.00E-03 2.02E-02 2570 6103 -2.37
hsa-miR-99b 4.65E-04 1.22E-02 926 2190 -2.37

hsa-miR-574-3p 2.76E-04 9.31E-03 719 1683 -2.34
hsa-miR-16 5.31E-04 1.29E-02 3219 7419 -2.30
hsa-miR-27a 4.53E-04 1.22E-02 1086 2469 -2.27
hsa-miR-320a 9.98E-05 5.43E-03 1361 3034 -2.23
hsa-miR-103 2.06E-04 8.55E-03 569 1265 -2.22

hsa-let-7a 2.06E-05 1.82E-03 439 956 -2.18
hsa-miR-320b 7.53E-05 4.84E-03 792 1698 -2.15

hsa-let-7f 1.48E-04 6.96E-03 5451 11590 -2.13
hsa-miR-199a-5p 2.76E-04 9.31E-03 429 915 -2.13

hsa-let-7b 4.60E-05 3.25E-03 423 859 -2.03
hsa-miR-149 2.03E-03 2.86E-02 262 529 -2.02
hsa-miR-1291 2.64E-04 9.31E-03 7451 14960 -2.01
hsa-miR-92a 1.16E-02 8.31E-02 3498 6989 -2.00
hsa-miR-214 2.75E-03 3.41E-02 6456 12668 -1.96
hsa-miR-93 3.50E-03 4.06E-02 578 1107 -1.91
hsa-miR-143 9.30E-06 1.14E-03 325 617 -1.90
hsa-miR-1259 5.50E-03 5.47E-02 673 1266 -1.88

hsa-miR-193a-5p 8.84E-05 5.21E-03 369 687 -1.86
hsa-miR-200c 1.42E-03 2.29E-02 433 791 -1.83
hsa-miR-107 1.31E-03 2.29E-02 435 787 -1.81
hsa-miR-195 2.80E-06 9.90E-04 318 574 -1.81
hsa-miR-484 1.30E-02 8.75E-02 1228 2170 -1.77

hsa-miR-423-5p 1.50E-03 2.30E-02 847 1424 -1.68
hsa-miR-23a 1.27E-02 8.72E-02 714 1191 -1.67

hsa-miR-125a-5p 2.72E-03 3.41E-02 348 569 -1.64
hsa-miR-22 1.30E-03 2.29E-02 345 550 -1.59
hsa-miR-30d 2.73E-03 3.41E-02 320 506 -1.58
hsa-miR-620 6.19E-03 5.76E-02 419 663 -1.58
hsa-miR-675 2.42E-02 1.37E-01 325 511 -1.57
hsa-miR-1248 1.22E-02 8.52E-02 399 623 -1.56
hsa-miR-125b 6.15E-03 5.76E-02 443 686 -1.55
hsa-miR-197 2.76E-02 1.42E-01 573 887 -1.55
hsa-miR-606 8.69E-03 7.23E-02 343 523 -1.53

hsa-miR-532-3p 3.71E-02 1.69E-01 460 700 -1.52
hsa-miR-1307 2.91E-02 1.43E-01 507 763 -1.51
hsa-miR-492 6.40E-04 1.46E-02 236 351 -1.49

59



hsa-miR-205 3.55E-02 1.65E-01 293 433 -1.48
hsa-miR-34a 3.34E-03 3.98E-02 353 519 -1.47
hsa-miR-19b 4.75E-02 1.90E-01 308 446 -1.45
hsa-miR-29a 1.10E-02 8.23E-02 371 537 -1.45

hsa-miR-1244 3.89E-02 1.72E-01 385 550 -1.43
hsa-miR-187 1.64E-03 2.47E-02 240 340 -1.42
hsa-miR-425 1.36E-03 2.29E-02 247 351 -1.42
hsa-miR-99a 2.72E-02 1.42E-01 393 551 -1.40
hsa-miR-744 3.93E-03 4.14E-02 283 390 -1.38

hsa-miR-151-5p 1.71E-02 1.08E-01 268 368 -1.37
hsa-miR-31 2.16E-03 2.93E-02 231 316 -1.37
hsa-miR-15b 1.19E-02 8.39E-02 251 340 -1.36

hsa-miR-127-3p 4.43E-02 1.84E-01 339 455 -1.34
hsa-miR-30a 3.22E-04 1.03E-02 220 287 -1.31

hsa-miR-324-5p 9.14E-03 7.43E-02 277 363 -1.31
hsa-let-7c 1.45E-04 6.96E-03 227 295 -1.30

hsa-miR-23b 3.32E-02 1.58E-01 305 392 -1.29
hsa-miR-26a 1.90E-02 1.15E-01 285 367 -1.29
hsa-miR-30c 2.11E-03 2.92E-02 219 282 -1.29
hsa-miR-320c 2.30E-03 3.07E-02 270 342 -1.27

hsa-let-7e 2.34E-02 1.34E-01 265 327 -1.24
hsa-miR-100 1.74E-02 1.09E-01 272 338 -1.24
hsa-miR-15a 6.32E-03 5.80E-02 229 279 -1.22
hsa-miR-340 1.16E-02 8.31E-02 214 258 -1.20
hsa-miR-661 2.76E-02 1.42E-01 256 210 1.22

hsa-miR-615-5p 1.18E-03 2.19E-02 354 288 1.23
hsa-miR-1280 1.11E-02 8.23E-02 37962 27554 1.37
hsa-miR-150 4.86E-02 1.90E-01 433 309 1.41
hsa-miR-346 1.35E-03 2.29E-02 302 212 1.43
hsa-miR-650 2.56E-02 1.41E-01 910 511 1.79
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Table S2.4.  Overlapping miR-92ab and miR-99ab/100 β4-regulated mRNAs

Gene ID  p-value FDR Average β4 
Intensity

Average Mock 
Intensity

Fold Change 
(β4/Mock)

EPHA3 4.79E-04 1.56E-02 265 104 2.54
GOLGA8A 7.60E-06 1.54E-03 148 65 2.28

ABHD2 4.79E-05 4.13E-03 168 75 2.22
SGCD 7.74E-03 7.84E-02 259 124 2.09
DCP2 3.05E-04 1.19E-02 149 84 1.78

RMND5A 1.37E-03 2.79E-02 108 61 1.76
WWP2 3.37E-03 4.75E-02 377 220 1.71

AMMECR1 1.55E-04 7.88E-03 125 73 1.70
KLHDC3 3.07E-05 3.27E-03 759 461 1.65
PTPN11 1.96E-04 9.26E-03 335 210 1.60

ZC3HAV1 9.30E-03 8.74E-02 168 108 1.56
ZFP106 3.67E-02 2.01E-01 473 310 1.52
CTDSPL 6.60E-05 4.94E-03 419 276 1.51
BAT2L2 2.94E-03 4.40E-02 137 92 1.49
PIK3R3 3.33E-03 4.72E-02 125 84 1.49
ZNF652 6.64E-04 1.88E-02 48 33 1.47
EFNB2 8.31E-03 8.19E-02 70 48 1.46
PPM1D 7.34E-05 5.13E-03 41 28 1.46
SOBP 9.55E-03 8.89E-02 40 28 1.46
NKTR 2.50E-03 4.01E-02 84 59 1.43

FOXO3 2.59E-03 4.11E-02 262 184 1.42
ZNF331 7.34E-05 5.13E-03 64 45 1.42
PKNOX1 1.47E-04 7.69E-03 68 49 1.40
RASGRP3 7.45E-03 7.64E-02 35 25 1.40
ADAM19 1.61E-03 3.08E-02 200 146 1.37

GNS 1.64E-03 3.11E-02 147 107 1.37
MFHAS1 5.10E-03 6.04E-02 213 155 1.37
WDFY3 4.25E-02 2.19E-01 60 43 1.37
WDR37 1.01E-02 9.20E-02 199 145 1.37
SORBS3 4.62E-02 2.29E-01 289 215 1.34
ITSN1 1.85E-03 3.32E-02 23 18 1.33

MECP2 9.82E-04 2.32E-02 198 149 1.33
VLDLR 2.81E-02 1.70E-01 80 60 1.33
HIP1 2.93E-02 1.75E-01 61 46 1.32

NIPBL 5.85E-03 6.58E-02 68 52 1.32
HLCS 3.32E-03 4.72E-02 132 101 1.31

PAXIP1 1.36E-03 2.79E-02 189 144 1.31
RNMT 3.71E-03 5.04E-02 196 150 1.31
SGSH 4.05E-03 5.29E-02 498 383 1.30
FNTA 3.31E-03 4.72E-02 290 225 1.29

MTMR1 2.35E-02 1.53E-01 60 47 1.29
SR140 2.04E-02 1.40E-01 88 68 1.29

FBXL18 2.08E-03 3.60E-02 142 111 1.28
ITGA2 9.05E-03 8.60E-02 73 57 1.28
CASK 1.03E-02 9.31E-02 161 127 1.27
AP1AR 1.16E-02 1.00E-01 92 74 1.25
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ARFGEF1 4.76E-02 2.33E-01 188 150 1.25
HN1L 1.59E-03 3.07E-02 1011 811 1.25
MTF1 2.54E-02 1.60E-01 142 113 1.25

S100PBP 1.94E-02 1.36E-01 89 71 1.25
UBE2I 9.20E-03 8.69E-02 1253 1003 1.25

DYRK1A 8.43E-03 8.24E-02 541 441 1.23
NF1 7.42E-03 7.63E-02 128 104 1.23

CDK6 4.05E-02 2.13E-01 96 79 1.22
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Table S2.5.  miR-92ab leading edge genes 

Gene 
Symbol Gene Title

Rank in 
Gene List1

Rank Metric 
Score2

Running 
ES3

SOX4 SRY (sex determining region Y)-box 4 10 2.005 0.016
HAPLN1 hyaluronan and proteoglycan link protein 1 37 1.253 0.024

FRYL furry homolog-like (Drosophila) 88 0.975 0.028
TMEM50B transmembrane protein 50B 93 0.951 0.036

AXL AXL receptor tyrosine kinase 124 0.855 0.040
TOB1 transducer of ERBB2, 1 129 0.843 0.047
DCP2 DCP2 decapping enzyme homolog (S. cerevisiae) 134 0.829 0.054

SEMA3A sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3A 138 0.813 0.060
DMXL1 Dmx-like 1 143 0.809 0.066
COL1A2 collagen, type I, alpha 2 153 0.795 0.072
TMF1 TATA element modulatory factor 1 163 0.778 0.078
WWP2 WW domain containing E3 ubiquitin protein ligase 2 164 0.777 0.084
CCNE2 cyclin E2 180 0.751 0.089
ITM2B integral membrane protein 2B 183 0.749 0.095
KIF3B kinesin family member 3B 198 0.722 0.100

ARHGEF10 Rho guanine nucleotide exchange factor (GEF) 10 215 0.702 0.105
CHD9 chromodomain helicase DNA binding protein 9 219 0.699 0.110
FMR1 fragile X mental retardation 1 228 0.687 0.115
ASPH aspartate beta-hydroxylase 252 0.668 0.119

MTMR9 myotubularin related protein 9 261 0.662 0.124
GRAMD3 GRAM domain containing 3 277 0.649 0.128
MMP16 matrix metallopeptidase 16 (membrane-inserted) 278 0.649 0.133

ICK intestinal cell (MAK-like) kinase 281 0.640 0.138
NFYB nuclear transcription factor Y, beta 292 0.626 0.143

PTPRK protein tyrosine phosphatase, receptor type, K 298 0.620 0.148
PRKAR2B protein kinase, cAMP-dependent, regulatory, type II, beta 305 0.618 0.152

SYNJ1 synaptojanin 1 308 0.616 0.157
ATP6V1B2 ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2 312 0.609 0.162

SRPK2 SFRS protein kinase 2 333 0.592 0.165
EN2 engrailed homolog 2 353 0.579 0.168

PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3 (p55, gamma) 363 0.571 0.172
ZNF652 zinc finger protein 652 390 0.553 0.175
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ATXN1 ataxin 1 399 0.548 0.179
AGGF1 angiogenic factor with G patch and FHA domains 1 421 0.535 0.182
LYST lysosomal trafficking regulator 422 0.535 0.186
ARF1 ADP-ribosylation factor 1 469 0.512 0.187

CALM3 calmodulin 3 (phosphorylase kinase, delta) 520 0.484 0.187
MTF2 metal response element binding transcription factor 2 531 0.482 0.190

GALNT7U P-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GalNAc- 544 0.477 0.193
INSIG1 insulin induced gene 1 563 0.465 0.195
WDR37 WD repeat domain 37 578 0.458 0.198

MFHAS1 malignant fibrous histiocytoma amplified sequence 1 580 0.458 0.202
ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 593 0.453 0.204

MKL2 MKL/myocardin-like 2 595 0.452 0.208
MMD monocyte to macrophage differentiation-associated 598 0.451 0.212

FBXO28 F-box protein 28 637 0.436 0.212
TBL1XR1 transducin (beta)-like 1X-linked receptor 1 655 0.431 0.214
NUCKS1 nuclear casein kinase and cyclin-dependent kinase substrate 1 661 0.429 0.218
EXOC5 exocyst complex component 5 681 0.424 0.220
TIA1 TIA1 cytotoxic granule-associated RNA binding protein 687 0.422 0.223

ARMC1 armadillo repeat containing 1 721 0.410 0.223
JARID2 jumonji, AT rich interactive domain 2 726 0.408 0.227
RBL2 retinoblastoma-like 2 (p130) 737 0.405 0.229

DYNLT3 dynein, light chain, Tctex-type 3 740 0.404 0.232
OTUD4 OTU domain containing 4 741 0.404 0.236
H3F3B H3 histone, family 3B (H3.3B) 751 0.400 0.238
G3BP2 - 757 0.398 0.241
PCGF3 polycomb group ring finger 3 779 0.392 0.243
MITF microphthalmia-associated transcription factor 791 0.388 0.245

PDE4D phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce homolog, Drosophila) 831 0.378 0.245
ZNF238 zinc finger protein 238 857 0.371 0.246
REV3L REV3-like, catalytic subunit of DNA polymerase zeta (yeast) 871 0.368 0.248
PHF17 PHD finger protein 17 911 0.359 0.248
CHMP7 CHMP family, member 7 921 0.356 0.250
PAIP1 poly(A) binding protein interacting protein 1 945 0.351 0.251
CASK calcium/calmodulin-dependent serine protein kinase (MAGUK family) 966 0.345 0.253
QKI quaking homolog, KH domain RNA binding (mouse) 976 0.343 0.255

CASD1 CAS1 domain containing 1 978 0.342 0.257
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CPEB1 cytoplasmic polyadenylation element binding protein 1 997 0.337 0.259
EDNRB endothelin receptor type B 999 0.336 0.262
ATXN10 ataxin 10 1000 0.336 0.264
PANK3 pantothenate kinase 3 1010 0.334 0.266
MORC3 MORC family CW-type zinc finger 3 1023 0.331 0.268
VPS4B vacuolar protein sorting 4 homolog B (S. cerevisiae) 1028 0.330 0.271
IDH1 isocitrate dehydrogenase 1 (NADP+), soluble 1056 0.325 0.271

CNOT2 CCR4-NOT transcription complex, subunit 2 1068 0.323 0.273
IMPA2 inositol(myo)-1(or 4)-monophosphatase 2 1098 0.317 0.273

CEP350 centrosomal protein 350kDa 1099 0.317 0.276
PHF15 PHD finger protein 15 1107 0.316 0.278
DAG1 dystroglycan 1 (dystrophin-associated glycoprotein 1) 1149 0.309 0.277

ZNF532 zinc finger protein 532 1151 0.308 0.280
RSBN1 round spermatid basic protein 1 1172 0.303 0.281

ZFYVE21 zinc finger, FYVE domain containing 21 1173 0.303 0.283
EIF4G2 eukaryotic translation initiation factor 4 gamma, 2 1231 0.292 0.281
CDK6 cyclin-dependent kinase 6 1254 0.287 0.282

DDHD2 DDHD domain containing 2 1284 0.282 0.282
PITPNC1 phosphatidylinositol transfer protein, cytoplasmic 1 1314 0.278 0.282
ROBO2 roundabout, axon guidance receptor, homolog 2 (Drosophila) 1341 0.274 0.282
DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked 1398 0.262 0.280
CCNJL cyclin J-like 1404 0.261 0.281
CNIH cornichon homolog (Drosophila) 1407 0.261 0.283

RANBP9 RAN binding protein 9 1422 0.259 0.284
WNT5A wingless-type MMTV integration site family, member 5A 1425 0.259 0.286
CCNC cyclin C 1428 0.258 0.288

TBC1D12 TBC1 domain family, member 12 1447 0.255 0.289

1 Rank in Gene List refers to position of gene in list of β4-regulated mRNAs ranked in order of greatest change in expression
2 Rank Metric Score is the score used to position the genes in the ranked list
3 Running Enrichment Score (ES) reflects the degree to which the gene is overrepresented in the top of the ranked list of genes
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CHAPTER III 

INTEGRIN β4 REGULATES SPARC PROTEIN TO PROMOTE INVASION 

 

This chapter represents work previously published and presented in accordance with 

copyright law: 

 

“This research was originally published in the Journal of Biological Chemistry.  Kristin 

D. Gerson, Jeffrey R. Shearstone, V.S.R. Krishna Maddula, Bruce E. Seligmann, and 

Arthur M. Mercurio.  Integrin β4 regulates SPARC protein to promote invasion.  Journal 

of Biological Chemistry.  2012; Epub ahead of print.  ©  The American Society for 

Biochemistry and Molecular Biology.” 
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Abstract 

The α6β4 integrin (referred to as ‘β4’ integrin) is a receptor for laminins that 

promotes carcinoma invasion through its ability to regulate key signaling pathways and 

cytoskeletal dynamics.  An analysis of published Affymetrix GeneChip data to detect 

downstream effectors involved in β4-mediated invasion of breast carcinoma cells 

identified SPARC, or secreted protein acidic and rich in cysteine.  This glycoprotein has 

been shown to play an important role in matrix remodeling and invasion. Our analysis 

revealed that manipulation of β4 integrin expression and signaling impacted SPARC 

expression, and that SPARC facilitates β4-mediated invasion.  Expression of β4 in β4-

deficient cells reduced the expression of a specific microRNA (miR-29a) that targets 

SPARC and impedes invasion.  In cells that express endogenous β4, miR-29a expression 

is low and β4 ligation facilitates the translation of SPARC through a TOR-dependent 

mechanism.  The results obtained in this study demonstrate that β4 can regulate SPARC 

expression and that SPARC is an effector of β4-mediated invasion.  They also highlight a 

potential role for specific miRNAs in executing the functions of integrins.  

 

Introduction   

Integrins are a family of heterodimeric transmembrane cell surface receptors 

composed of α and β subunits that collectively link the cytoskeleton to components in the 

extracellular matrix or to neighboring cells (131, 132).  The integrin α6β4, referred to as 

‘β4 integrin,’ is an adhesion receptor for the laminins that plays a pivotal role in both 

normal tissue development and homeostasis, as well as in carcinoma progression (85, 
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188).  β4 mediates the formation of HDs, inert structures on the basal surface of epithelial 

cells anchoring the intermediate cytoskeleton to laminins in the basement membrane 

(133, 134).  Factors in the tumor microenvironment of invasive carcinomas liberate β4 

from HDs and promote its relocalization to the leading edge of cells, where it becomes 

signaling competent and associates with F-actin in lamellae and filopodia to promote 

migration and invasion (58, 85, 86, 135-137).  In the context of breast cancer, this 

integrin is associated with a “basal-like” subset of tumors, and its expression predicts 

decreased time to tumor recurrence as well as decreased patient survival (138).  The 

contributions of β4 to carcinoma progression stem, in part, from its ability to regulate the 

expression and function of downstream effector molecules (53, 63, 78, 79, 85, 98, 102).  

We conducted an analysis of published Affymetrix GeneChip data (76) and 

identified SPARC, or secreted glycoprotein acidic and rich in cysteine as a potential 

effector of β4-mediated function.  SPARC plays a key role in extracellular matrix 

remodeling and cell motility (189).  The data we obtained demonstrate that β4 expression 

and ligation can regulate SPARC and that SPARC is an effector of β4-mediated invasion.  

Interestingly, SPARC was identified as a target of miR-29a in osteoblasts (190), 

prompting us to examine the role of miRNAs downstream of β4 in the regulation of 

SPARC.  miRNAs are non-coding single-stranded RNAs approximately 22 base pairs in 

length that regulate gene expression through mRNA degradation or translational 

inhibition and have been shown to play an increasingly significant role in tumorigenesis 

(108, 123).  We identify miR-29a as a β4-regulated miRNA that can influence SPARC 

expression and invasion.  The regulation of miR-29a by β4 is seen in cells that exhibit 
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high miR-29a expression; in cells that express endogenous β4, miR-29a expression is 

low.  Finally, we provide evidence that β4 expression and ligation facilitate the 

translation of SPARC.   

 

Results  

β4 integrin regulates expression of SPARC  

 MDA-MB-435 breast carcinoma cells were utilized initially as a model system to 

identify β4-regulated genes that facilitate invasion.  Despite some reports claiming that 

these cells are of melanocytic origin (191-193), several reports have refuted this claim 

and have provided convincing data that this is a poorly differentiated cell line of breast 

cancer origin (194-198).  These cells express α6β1 endogenously but lack α6β4.  

Introduction of the β4 subunit leads to preferential heterodimerization of the α6 subunit 

with the β4 subunit (33, 142).  Stable subclones were generated expressing wild-type β4  

(referred to as β4 transfectants) or a β4 deletion mutant  (referred to as β4ΔCYT 

transfectants) that lacks the cytoplasmic domain of the β4 subunit.  This deletion impedes 

the signaling capacity of the integrin, and it eliminates the formation of the α6β1 

heterodimer (53, 199).  Mock transfectants were also generated.  The β4 transfectants are 

significantly more invasive than either the mock or β4ΔCYT transfectants (53). 

To identify potential regulators of β4-mediated invasion, we conducted an 

analysis of published Affymetrix GeneChip data that were obtained using the MDA-MB-

435/β4 transfectants (76).  SPARC, or secreted protein acidic and rich in cysteine, was 

identified using this approach.  This secreted glycoprotein is involved in extracellular 
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matrix remodeling and invasion (189).  SPARC mRNA and protein expression was 

examined to determine whether β4 differentially regulates its expression in this system.  

Quantitative real time PCR (qPCR) confirmed that SPARC message levels are elevated 

over 3-fold in the β4 transfectants compared to controls (Fig. 3.1A).  Furthermore, 

SPARC protein expression is elevated significantly in the total cell extract and culture 

media of the β4 transfectants compared to either the mock or β4ΔCYT transfectants (Fig. 

3.1B), providing evidence that the β4 integrin can induce SPARC expression.  

β4 expression inversely correlates with miR-29a expression 

SPARC was recently identified as a target of miR-29a in osteoblasts (190), 

prompting us to examine the role of miRNAs downstream of β4 in the regulation of 

SPARC.  SPARC contains two conserved miR-29 predicted miRNA binding sites and 

one conserved miR-203 predicted binding site in its 3’UTR.  These observations are 

relevant because of results from a miRNA microarray conducted by our laboratory to 

assess global miRNA expression in the MDA-MB-435/β4 system.  Specifically, two 

subclones of the β4 transfectants (3A7 and 5B3) and two subclones of the mock 

transfectants (6D2 and 6D7), as well as the MDA-MB-435 parental cells, were examined 

using a novel microarray technology termed qNPA.  The results of the array 

demonstrated that β4 expression repressed the expression of miR-29a and miR-29b (Fig. 

3.2A).  miR-29c and miR-203 levels, however, were unchanged (data not shown).   We 

focused on miR-29a because it has been shown to target SPARC and because miR-29b 

undergoes rapid decay following nuclear import in cycling cells (200).   The microarray 

data were confirmed using qPCR.  The expression of β4 in MDA-MB-435 cells resulted 
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in an approximate 4-fold decrease in miR-29a compared to the mock transfectants.  

Furthermore, a subclone of the β4ΔCYT transfectants (5D5) was also examined and 

found to express levels of miR-29a similar to those detected in the mock transfectants 

(Fig. 3.2B), indicating that the cytoplasmic tail of β4 is required for repression of miR-

29a.  

To assess the relationship between β4 and miR-29a expression further, we 

examined a series of breast carcinoma cell lines with differential β4 expression.  The β4-

null MDA-MB-435 parental cells were compared to the β4-null SUM1315 breast 

carcinoma cell line, and to the β4-expressing MDA-MB-231 and SUM-159 breast 

carcinoma cell lines (Fig. 3.2C).  Levels of miR-29a were markedly lower in cell lines 

expressing β4 compared to those not expressing the integrin (Fig. 3.2D), supporting a 

relationship between β4 expression and the regulation of miR-29a.  

Gene set enrichment analysis of the published Affymetrix GeneChip data (76) 

was conducted to substantiate the role of miR-29a in the regulation of β4-mediated 

targets.  This analysis examines the population of β4-regulated mRNAs for an over-

representation of genes predicted to be targeted by our miRNA of interest.  Our analysis 

revealed a significant enrichment (p < 0.001) for miR-29 predicted targets in mRNAs 

upregulated by β4 (Fig. 3.3).  In contrast, no enrichment was detected for miR-93, a 

miRNA selected as a negative control on the basis that it was expressed at robust levels in 

all samples (data not shown).  As part of this analysis, a list of leading edge genes was 

generated, consisting of a group of mRNAs that are the important contributors to the 

detected enrichment.  The list of leading edge genes contained 116 mRNAs (Table S3.1), 
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the top 25 of which are listed in Table 3.1 ranked in order of contribution to the detected 

enrichment.  As anticipated, SPARC appears on this list.  Of interest, other genes in this 

table have also been implicated in the invasive process in breast carcinoma and other 

cancers, including LOXL2 and MAPRE2 (201-206).  COL1A2 appears on this list as 

well and has been linked to increased cell motility and metastatic disease (207, 208).  

These observations raise the possibility that miR-29a regulates a pro-invasive pool of 

target genes, and that SPARC actively cooperates with many of these molecules to 

promote carcinoma invasion.   

β4-mediated repression of miR-29a can promote SPARC-dependent invasion 

The findings described above raised the issue of whether miR-29a represses 

invasion by targeting SPARC.  To test the hypothesis that repression of miR-29a is 

required for invasion, a synthetic chemically-modified miRNA mimic was used to 

overexpress the mature form of miR-29a in the MDA-MB-435/β4 transfectants.  

Transfection of the β4 transfectants with the miR-29a mimic decreased invasion 6.6-fold 

compared to cells transfected with a non-specific negative control mimic (Fig. 3.4A).  

These findings were extended to SUM-159 cells, an invasive breast carcinoma cell line 

that endogenously expresses β4 and contains levels of miR-29a similar to those of the β4 

transfectants (Figs. 3.2B, 3.2C, and 3.4A).  We then pursued the possibility that loss of 

functional miR-29a is sufficient to induce an invasive phenotype.  Mock transfectants, 

which are poorly invasive and express relatively high levels of miR-29a, were transfected 

with a miR-29a functional inhibitor.  This hairpin inhibitor is an RNA oligonucleotide 

designed to inhibit the function of the endogenous miRNA.  Expression of the inhibitor 

72



diminishes levels of functional miR-29a and, thus, mimics β4-induced miR-29a 

repression.  The results from this experiment demonstrate that inhibition of miR-29a is 

not sufficient to induce the invasive phenotype of cells in the absence of β4 (Fig. 3.4B), 

consistent with our observation that overexpression of SPARC in the mock transfectants 

resulted in no change in invasion (data not shown).  

To establish that miR-29a represses SPARC as a function of β4 expression, 

SPARC expression was examined following manipulation of miR-29a levels in both the 

MDA-MB-435/β4 and mock transfectants.  Transfection of the β4 transfectants with the 

miR-29a mimic produced a significant decrease in SPARC expression compared to mock 

transfected cells and cells transfected with a non-specific negative control mimic (Fig. 

3.4C).  Conversely transfection of the mock transfectants with a miR-29a inhibitor 

substantially increased SPARC expression compared to mock transfected cells and cells 

transfected with a non-targeting negative control inhibitor (Fig. 3.4C).  Importantly, these 

data substantiate the invasion assays described above by confirming that the mimic and 

hairpin inhibitor are functional, since functionality is established by their ability to 

regulate target gene expression.  Furthermore, the protein data from the inhibitor studies 

provide a control for the invasion assay presented in Figure 3.4B, insuring that the poorly 

invasive phenotype of the cells transfected with the miR-29a inhibitor is not due to a 

technical problem with the inhibitor. 

To determine whether SPARC is necessary for β4-mediated invasion, β4 

transfectants were subjected to an invasion assay following incubation with a functional 

blocking antibody to SPARC.  The ability of these cells to invade Matrigel was decreased 
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2.5-fold compared to cells receiving no treatment and cells pre-incubated with normal 

mouse IgG (Fig. 3.4D), establishing a role for this β4 target in mediating invasion 

downstream of the integrin.   

β4 can regulate SPARC independently of miR-29a  

Although the β4 transfectants possess some constitutive activity and can mediate 

β4-function in a ligand independent manner (78, 88), ligation of β4 either by adhesion to 

laminin or antibody-mediated clustering should in principle further repress miR-29a and 

upregulate SPARC expression.  Interestingly, our data indicate that β4 signaling can 

upregulate SPARC expression independently of the miRNA.  As depicted in Figure 3.5A, 

ligation of β4 in the β4 transfectants by adhesion to laminin induces SPARC protein 

expression compared to suspension control.  Given that the β4 transfectants retain 

expression of the β1 integrin subunit (53), antibody-mediated clustering experiments 

were conducted to substantiate these data and further implicate β4 signaling in the 

regulation of this effector molecule.  Specifically, clustering with an antibody to the α6 

subunit of the integrin (mAb 2B7) upregulates SPARC protein compared to cells 

clustered with an antibody to β1 (mAb AIIB2), confirming that this regulation is specific 

to integrin α6β4 (Fig. 3.5A). 

Our observation that SPARC induction occurs in the absence of further miR-29a 

repression (data not shown) prompted us to examine the expression of SPARC message 

under these conditions.  SPARC mRNA levels are unchanged in cells clustered with the 

α6 antibody compared to the β1 control (Fig. 3.5B), suggesting that β4 plays a role in 

regulating SPARC protein stability or translation.  Considering that ligation of this 
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integrin is known to upregulate mTOR signaling and VEGF translation (95), we treated 

cells with rapamycin, an inhibitor of TOR cap-dependent translation.  As depicted in 

Figures 3.5A and 3.5B, rapamycin blocked β4-mediated induction of SPARC protein, as 

well as pS6K and p4E-BP1 signaling intermediates.  Our data suggest that while steady-

state levels of SPARC can be regulated by miR-29a in this system, rapid changes in 

SPARC expression occurring in response to β4 ligation arise through a TOR-dependent 

translational mechanism. 

We next assessed the relationship between β4 and SPARC in breast carcinoma 

cells that express endogenous β4.  For this purpose, the SUM-159 cell line was selected 

because it is an invasive breast carcinoma cell line in which SPARC is robustly expressed 

(Fig. 3.5D). Interestingly, transient depletion of β4 using siRNA diminished SPARC 

protein expression but it had no effect on SPARC mRNA levels (Figs. 3.5C and 3.5D).  

These data support the hypothesis that β4 can regulate SPARC expression.  Depletion of 

β4 expression, however, did not increase miR-29a (data not shown).  Based on our 

observation that β4 can regulate SPARC independently of the miRNA in the MDA-MB-

435 system, we examined the possibility that this translational mechanism was also at 

play in the SUM-159 cells.  As depicted in Fig. 3.5D, levels of pS6K and p4E-BP1 

signaling intermediates were diminished upon loss of β4.  To establish that this pathway 

is required for maintenance of SPARC expression, SUM-159 parental cells were treated 

with rapamycin.  After six hours, a detectable decrease in SPARC protein levels was 

observed (Fig. 3.5E), suggesting that β4 regulates SPARC expression in this system 

through a TOR-dependent translational mechanism. 
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To assess the role of β4 ligation and signaling in regulating SPARC translation in 

SUM-159 cells, these cells were plated on laminin in the presence or absence of 

rapamycin.  Work from our laboratory has established that α6β4 is the predominant 

laminin-binding integrin in these cells (96).  Laminin-mediated clustering of β4 induces 

SPARC expression at the protein level compared to suspension control (Fig. 3.5F), while 

SPARC mRNA levels remain unaffected (Fig. 3.5G).  As anticipated, this induction is 

abrogated upon treatment with rapamycin (Fig. 3.5F). 

 

Discussion   

The major conclusion of this study is that the β4 integrin can regulate the 

expression of SPARC in breast carcinoma cells.  This finding is significant because this 

integrin is known to facilitate the invasion of carcinoma cells, and its regulation of 

SPARC adds to our understanding of how β4 can contribute to the invasive process.  In 

addition, our data reveal a novel function for the β4 integrin in repressing the expression 

of a specific miRNA, miR-29a that can impede invasion.  To our knowledge, this is the 

first report that integrins can regulate the expression of miRNAs.  One mechanism by 

which miR-29a impedes invasion is to target SPARC.  This mode of miR-29a regulation 

by β4 is manifested in cells that express high levels of miR-29a.  In other cells that 

express endogenous β4 and low levels of miR-29a, we provide evidence that β4 

expression and signaling can enhance SPARC translation.  These findings indicate that 

β4 has the ability to regulate SPARC expression by distinct mechanisms. 
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Our data support the notion that SPARC, a secreted extracellular matrix 

glycoprotein with counter-adhesive properties, functions to promote invasion.  This role 

for SPARC is supported by the findings that SPARC can promote cell motility and 

invasion in various carcinoma cells, including breast (209-216).  Moreover, SPARC 

expression has been associated with basal-like breast cancers (217).  This observation is 

relevant to our findings because we correlated β4 integrin expression with basal-like 

breast cancers in a previous study (138), and the cell lines used in the current study 

exhibit a basal phenotype.  Some reports, however, have questioned the role of SPARC in 

breast cancer invasion and progression (218, 219).  SPARC has also been shown to 

decrease the mitogenic potency of various growth factors including VEGF and platelet-

derived growth factor (PDGF) by antagonizing their ability to bind to their cognate 

receptors (220, 221).  In contrast, there is evidence that SPARC can enhance integrin and 

growth factor receptor-regulated kinases, thereby upregulating key signaling pathways 

involved in cell motility (215, 222-226), observations that are consistent with our data.  

This dichotomy of SPARC function may be explained by the hypothesis that SPARC 

inhibits early stages of tumorigenesis but potentiates later stages of progression, 

analogous to the TGF-β pathway (227), a growth factor signaling pathway that SPARC 

has been shown to regulate (226, 228-232).  

Our data provide the first indication that β4 has the ability to regulate the 

expression of specific miRNAs and that such miRNAs can influence β4-mediated 

migration and invasion.   Since the initial reports that the β4 integrin has the ability to 

promote the migration and invasion of epithelial and carcinoma cells, numerous 
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mechanisms have been reported to account for this phenomenon.  These mechanisms 

include activation of signaling pathways, especially the PI3K pathway and Rho GTPases, 

transcription factors (NFAT), and cap-dependent translation of key effector molecules 

(53, 74, 78, 79, 95, 233, 234).  The ability of β4 to regulate the expression of miRNAs 

adds a new dimension to our understanding of how β4 mediates invasion and other 

functions.  The repression of miR-29a that occurs in response to exogenous expression of 

β4 is significant in this context because miR-29a represses invasion and targets SPARC.  

While our data indicate that β4-mediated repression of miR-29a is required for invasion, 

our observation that functional inhibition of this miRNA did not induce an invasive 

phenotype in the poorly invasive, mock transfectants suggests that a single miRNA is 

unlikely to be solely responsible for a cellular process.  Although we observed that this 

regulation of miR-29a by β4 is manifested in specific cell types, especially those that 

express high levels of miR-29a, the paradigm that miRNAs contribute to the execution of 

integrin-mediated functions may be widespread. 

The half-life of specific miRNAs could be a significant factor in their potential 

repression by integrin signaling.  Given that the reported half-life of miR-29a is greater 

than 12 hours (200), a detectable decrease in miR-29a following the transient signaling 

events induced by integrin ligation would require degradation of the pre-existing miRNA.  

This assumption is supported by our result that antibody-mediated clustering of β4 on 

MDA-MB-435 cells for times up to four hours had no significant effect on miR-29a 

expression.  We surmise from these data that exogenous expression of β4 in β4-deficient 

cells results in a long-term and sustained repression of miR-29a expression.  This 
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possibility is supported tangentially by our finding that the expression pattern of β4 in 

breast carcinoma cell lines correlates inversely with miR-29a expression, and previous 

reports that β4-mediated signaling and function can occur independently of its ligation 

(78, 88).  It is also worth noting in this regard our analysis of published microarray data 

that revealed a significant enrichment in miR-29a predicted targets in mRNAs 

upregulated by expression of β4. This finding suggests that a miRNA can broadly affect 

gene expression downstream of an integrin and corroborate the importance of miR-29a in 

the regulation of genes whose expression is mediated by β4. 

We also provide evidence that SPARC can be regulated at the level of protein 

translation by β4, particularly in cells that express endogenous β4 and low levels of miR-

29a.  Ligation of β4 by adhesion to laminin or antibody-mediated clustering upregulates 

SPARC protein expression in both MDA-MB-435/β4 transfectants as well as SUM-159 

cells.  This finding is consistent with a previous report demonstrating that β4 can 

facilitate the cap-dependent translation of VEGF in breast carcinoma cells (95).  In 

principle, this mode of regulation would enable SPARC expression to be altered rapidly 

in response to microenvironmental cues that impact β4. Moreover, the β4-mediated 

regulation of SPARC by miRNA repression and cap-dependent translation mechanisms 

need not be mutually exclusive.   

 

Materials and Methods   

Cell Lines, Antibodies, and Reagents: MDA-MB-435 and MDA-MB-231 cells were 

obtained from the Lombardi Cancer Center (Georgetown University, Washington, DC).  
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SUM-159 and SUM1315 cells were obtained from Dr. Stephen Ethier (Wayne State 

University School of Medicine, Detroit, MI).  MDA-MB-435 and MDA-MB-231 cell 

lines were maintained in low glucose DMEM medium (Gibco, Carlsbad, CA) 

supplemented with 10 mM HEPES, 5% fetal bovine serum, and 1% streptomycin and 

penicillin.  SUM-159 were maintained in Ham’s F12 medium (Gibco) supplemented with 

5% fetal bovine serum, insulin (5 µg/ml), hydrocortisone (1 µg/ml), and 1% streptomycin 

and penicillin.  SUM1315 cells were maintained in Ham’s F12 medium (Gibco) 

supplemented with 5% fetal bovine serum, insulin (5 µg/ml), EGF (10 ng/ml), and 1% 

streptomycin and penicillin.  All cell lines were grown at 37°C in an incubator supplied 

with 5% CO2.  MDA-MB-435 mock transfectants (6D2 and 6D7 sublcones), β4 

transfectants (3A7 and 5B3 subclones), and β4ΔCYT transfectants (5D5) were generated 

and characterized as previously described (53). Antibodies to SPARC (Haematological 

Technologies, Essex Junction, VT), pS6K (Cell Signaling, Beverly, MA), p4E-BP (Cell 

Signaling), tubulin (Sigma, St. Louis, MO), and actin (Sigma) were used for 

immunoblotting.  The same SPARC antibody was used as a functional blocking antibody 

for invasion assays.  The 505 antibody to β4, used for immunoblotting, and the 2B7 

antibody to α6, used for clustering, were produced by our laboratory as previously 

described (86, 182). The AIIB2 antibody to β1 (Development Studies Hybridoma Bank, 

University of Iowa, Iowa City, IA) was used for clustering experiments.  For inhibitor 

experiments, rapamycin (Sigma) was used at a concentration of 50 nM.   

Immunoblotting: Cells were solubilized on ice for 10 min in Triton X-100 lysis buffer 

(Boston Bioproducts, Ashland, MA) containing 50 mM Tris buffer, pH 7.4, 150 mM 
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NaCl, 5mM EDTA, 1% Triton X-100, and protease inhibitors (Complete mini tab; Roche 

Applied Science, Indianapolis, IN) (Lysis Buffer A).  Nuclei were removed by 

centrifugation at 16,100 × g for 10 min.  Culture media was concentrated 8-fold using 

Ultra-4 Centrifugal Filter Units with a 10 kDa cutoff by spinning at 340 × g for 25 min 

(Millipore, Indianapolis, IN).  Concentrations of total cell lysate and culture media were 

assayed by Bradford method.  Lysates (50 µg) and concentrated culture media (25 ug) 

were separated by electrophoresis through 10% SDS-PAGE and transferred to 0.2 µm 

nitrocellulose membranes (Bio-Rad, Hercules, CA).  Membranes were blocked in 5% 

nonfat milk in Tris-buffered saline/Tween 20 for 1 h and blotted with the antibodies to 

SPARC (1:10,000), pS6K (1:500), p4E-BP (1:1000), β4 (1:4,000), actin (1:5,000), or 

tubulin (1:10,000) overnight at 4°C.  Proteins were detected by enhanced 

chemiluminescence (Pierce, Rockford, IL) after incubation for 1 h with horseradish 

peroxidase-conjugated secondary antibodies. 

miRNA and RNA Isolation and Detection: Total RNA was isolated using the miRVana 

RNA Isolation Kit according to manufacturer protocol (Ambion).  qPCR detection of 

mature miRNAs was performed using TaqMan miRNA Reverse Transcription Kit and 

TaqMan human Microarray Assays for miR-29a (Applied Biosystems, Austin, TX) 

according to manufacturer protocol.  U6 small nuclear RNA was used as an internal 

control.  qPCR detection of SPARC mRNA was performed using Superscript II reverse 

transcriptase (Invitrogen) and Power SYBR Green (Applied Biosystems) according to 

manufacturer protocol.  GAPDH was used as an internal control.  miRNA and SPARC 

expression levels were quantified using the ABI Prism 7900HT Sequence detection 
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system (Applied Biosystems).  Primers to SPARC (5’-AGCACCCCATTGACGGGTA-

3’ and 5’-GGTCACAGGTCTCGAAAAAGC-3’) and GAPDH (5’-

ATCATCCCTGCCTCTACTGG-3’ and 5’-GTCAGGTCCACCACTGACAC-3’) were 

used for analysis.  

Gene Set Enrichment Analysis: For miRNA target enrichment analysis, mRNA 

expression data generated by Chen et. al. (76) were downloaded from the NCBI Gene 

Expression Omnibus (GEO), series number GSE11466.  Affymetrix CEL files were 

processed with the robust multi-chip average (RMA) algorithm (186) using BRB-

ArrayTools.  TargetScanHuman Release 5.1 (235, 236) was used to predict conserved 

mRNA targets.  Using total context score, the top 500 targets for miR-29 or miR-93 were 

compiled into gene set lists.  miR-93 targets were used as a negative control gene set 

because miR-93 is highly abundant, yet it did not change expression in the β4 versus 

mock miRNA array analysis.  Log base 2 mRNA data was loaded into the Broad 

Institute’s Gene Set Enrichment Analysis (GSEA) software v2.06 (163, 187).  β4 

phenotype was compared to mock phenotype by first collapsing the dataset to gene 

symbols and then using a weighted, difference of classes metric for ranking genes.  Gene 

set permutations were performed to generate nominal p-values for each miRNA target 

gene set list.  

Oligonucleotide Transfection: miRIDIAN- microRNA Mimics are synthetic chemically 

modified mature miRNAs (Dharmacon, Lafayette, CO).  MDA-MB-435 β4 transfectants 

were transfected with 20 nM hsa-miR-29a mimic or a miRNA mimic negative control at 

50% confluency using DharmaFECT 4 Transfection Reagent (Dharmacon).  At 72 h 
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post-transfection, cells were plated for invasion assays or harvested for total cell lysate.  

A miRIDIAN microRNA Hairpin Inhibitor to mature miR-29a was used for loss-of-

function analyses along with a hairpin inhibitor negative control (Dharmacon).  MDA-

MB-435 mock transfectants were transfected with 20 nM miR-29a inhibitor or negative 

control inhibitor as described above. At 72 h post-transfection, cells were harvested for 

protein or total RNA as described above. 

Invasion Assays: The upper surfaces of the transwells were coated with 0.5 µg Matrigel 

(BD Biosciences, Bedford, MA) and allowed to dry overnight at room temperature.  Cells 

were harvested at 80% confluency by trypsinization and resuspended low glucose 

DMEM containing 0.25% heat-inactivated fatty acid-free bovine serum albumin.  The 

coated surfaces of the transwells were blocked with media containing bovine serum 

albumin for 60 min at 37°C.  For SPARC blocking antibody experiments, cells were 

incubated with 16 ug/ml of SPARC antibody (Haematological Technologies) or normal 

mouse IgG for 30 min at room temperature with intermittent agitation.  105 cells in a total 

volume of 100 µl were loaded into the upper chamber and NIH-3T3 conditioned media 

was added to the lower chamber.  Assays proceeded for 4 h at 37°C.  At the completion 

of the assays, the upper chamber was swabbed to remove residual cells and fixed with 

methanol.  Cells on the lower surface of the membrane were mounted in 4′,6-diamidino-

2-phenylindole mounting media (Vector Laboratories, Burlingame, CA), and the number 

of cells was determined for five independent fields in triplicate with a 10X objective and 

fluorescence.  
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siRNA Experiments: SUM-159 cells were transfected with 20 nM On-TARGETplus 

SMARTpool siRNA targeting β4 (Dharmacon) at 50% confluency using DharmaFECT 4 

transfection reagent (Dharmacon).  A non-targeting siRNA pool (Dharmacon) was used 

as a control for these experiments.  At 72 h post-transfection, cells were harvested for 

protein or total RNA as described above. 

Integrin Clustering: MDA-MB-435/β4 and SUM-159 cells were serum starved overnight 

in DMEM containing 0.1% BSA and F12 containing 0.1% BSA, respectively.  Cells were 

trypsinized, washed, and the resuspended at a concentration of 106 cells/ml.  For laminin 

experiments, cells were plated on laminin (100 µg/10 cm plate) or maintained in 

suspension.  For antibody-mediated clustering experiments, cell suspensions were 

incubated for 30 minutes with integrin-specific antibodies (2 µg/ml) in DMEM 

containing 0.1% BSA.  The cells were washed and added to plates that had been coated 

overnight with anti-mouse or anti-rat IgG (33 µg/6 cm plate).  For both laminin and 

antibody-mediated clustering experiments, cells were treated with 50 nM Rapamycin or 

DMSO for 10 minutes prior to plating cells on coated plates. After incubation at 37°C for 

45 minutes, the cells were washed twice with PBS and lysed for protein in a 20 mM Tris 

buffer, pH 7.4, containing 10% glycerol, 136 mM NaCl, 10% NP-40, 1 mM sodium 

orthovanadate (Na3VO4), 10 mM sodium fluoride (NaF), 2 mM phenylmethanesulfonyl 

fluoride (PMSF), and complete protease inhibitor cocktail (Roche) (Lysis Buffer B) or 

for total RNA as described above. 
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Rapamycin Experiments: SUM-159 parental cells were treated with 50 nM Rapamycin or 

DMSO in serum-containing medium for four or six hours.  Cells were lysed using Lysis 

Buffer B and samples were prepared for analysis as described above.  

Statistical Analysis: Data are presented as the mean ± S.E. The Student's t test was used 

to assess the significance of independent experiments. The criterion p < 0.05 was used to 

determine statistical significance.  
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Table 3.1.  Top 25 leading edge genes 

Gene 
Symbol Gene Title

Rank in 
Gene 
List1

Rank 
Metric 
Score2

Running 
ES3

GPR37 G protein-coupled receptor 37 (endothelin receptor type B-like) 17 1.607 0.020
SHROOM2 shroom family member 2 70 1.054 0.030

HDAC4 histone deacetylase 4 90 0.960 0.041
TRIM9 tripartite motif-containing 9 92 0.952 0.053
MYBL2 v-myb myeloblastosis viral oncogene homolog (avian)-like 2 104 0.910 0.065
LOXL2 lysyl oxidase-like 2 113 0.873 0.075
FAM3C family with sequence similarity 3, member C 121 0.859 0.086
DCP2 DCP2 decapping enzyme homolog (S. cerevisiae) 134 0.829 0.096

TUBB2A tubulin, beta 2A 149 0.798 0.106
HMGN3 high mobility group nucleosomal binding domain 3 152 0.796 0.116
COL1A2 collagen, type I, alpha 2 153 0.795 0.126
KCTD3 potassium channel tetramerisation domain containing 3 158 0.786 0.137

MAPRE2 microtubule-associated protein, RP/EB family, member 2 169 0.769 0.146
GMFB glia maturation factor, beta 193 0.733 0.154

COL5A2 collagen, type V, alpha 2 196 0.727 0.163
FRAT2 frequently rearranged in advanced T-cell lymphomas 2 226 0.690 0.170
MLF1 myeloid leukemia factor 1 266 0.657 0.176

CNOT8 CCR4-NOT transcription complex, subunit 8 270 0.654 0.184
ZFP36L1 zinc finger protein 36, C3H type-like 1 279 0.644 0.192
SPARC secreted protein, acidic, cysteine-rich (osteonectin) 280 0.640 0.200
LAMC1 laminin, gamma 1 (formerly LAMB2) 283 0.638 0.209
PURA purine-rich element binding protein A 295 0.623 0.216
RERE arginine-glutamic acid dipeptide (RE) repeats 306 0.617 0.223
GAS7 growth arrest-specific 7 315 0.607 0.231
PPIC peptidylprolyl isomerase C (cyclophilin C) 316 0.606 0.239

1 Rank in Gene List refers to position of gene in list of mRNAs ranked in order of greatest 
change in expression
2 Rank Metric Score is the score used to position the genes in the ranked list
3 Running Enrichment Score (ES) reflects the degree to which the gene is overrepresented
 in the top of the ranked list of genes
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Figure 3.1.  β4 integrin regulates expression of SPARC.  A, Relative expression of 

SPARC mRNA by qPCR in mock, β4ΔCYT, and β4 transfectants, *, p < 0.04.  B, 

Expression of SPARC in total cell extract (50 µg) and culture medium (25 µg) across 

MDA-MB-435 subclones.   
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Figure 3.2.  β4 expression inversely correlates with miR-29a expression.  A, miR-29a 

and miR-29b expression from qNPA microarray performed in triplicate on the MDA-

MB-435 parental cell line, two subclones of the MDA-MB-435 mock transfectants (6D2 

and 6D7), and two subclones of the MDA-MB-435 β4 transfectants (3A7 and 5B3).  B, 

Relative expression of miR-29a in two subclones of the mock transfectants, one subclone 

of the β4ΔCYT transfectants, and two subclones of the β4 transfectants based on qPCR, 

*, p < 0.001 when compared to average expression in mock transfectants.  C, Expression 

of β4 in total cell extract (50 µg) in MDA-MB-435, SUM1315, SUM-159, and MDA-

MB-231 breast carcinoma cell lines *, p < 0.004.  D, Relative expression of miR-29a in 

MDA-MB-435, SUM1315, SUM-159, and MDA-MB-231 breast carcinoma cell lines.  

Data represent means ± S.E. from three independent experiments. 
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Figure 3.3.  Enrichment of miR-29 predicted targets in β4-regulated mRNAs.  

GeneChip derived mRNA levels were ranked from the most upregulated in β4 

transfectants to the most downregulated (x-axis, 1 to 12,300, respectively).  Red shading 

indicates mRNA is upregulated in β4 transfectants, while blue shading indicates mRNA 

is downregulated.  Each vertical black line represents a miRNA target predicted by 

TargetScan.  The left-to-right position of each black line indicates the relative position of 

the predicted target within the rank ordered mRNA list.  Left panel, the miR-29 predicted 

target gene set is enriched among mRNAs upregulated in the β4 transfectants, as 

illustrated by the increasing number of black lines on the left side and the positive 

running enrichment score (ES) marked by the green line (p < 0.001).  The leading edge 

subset, the 116 miR-29 targets that contribute the most to the ES, are found to the left of 

the gray dotted line.  Right panel, miR-93 predicted targets, used as a negative control 

gene set, did not show a significant enrichment (p = 0.438).
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Figure 3.4.  β 4-mediated repression of miR-29a can promote SPARC-dependent 

invasion.  A, β4 transfectants and SUM-159 cells were subjected to Matrigel invasion 

assays following transfection with a miR-29a mimic, *, p < 0.02.  B, Mock transfectants 

were subjected to Matrigel invasion assays following transfection with a miR-29a hairpin 

inhibitor.  Data for invasion assays represent means ± S.E. from a representative 

experiment.  C, Expression of SPARC in total cell lysate (50 µg) following expression of 

miR-29a mimic in β4 transfectants 72 hours post-transfection or expression of miR-29a 

hairpin inhibitor in mock transfectants 72 hours post-transfection.  D, β4 transfectants 

were subjected to Matrigel invasion assays following 30 minute pre-incubation with 

normal mouse IgG or a SPARC function blocking antibody, *, p < 0.001.  Data for 

invasion assay represents means ± S.E. from three independent experiments. 
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Figure 3.5.  β4 can regulate SPARC independently of miR-29a.  A, MDA-MB-435/β4 

cells were plated on laminin (LM) or maintained in suspension (S) for 45 minutes (left 

panel); MDA-MB-435/β4 cells were incubated with integrin-specific primary antibodies 

prior to plating on secondary antibody-coated plates for 45 minutes (right panel).  

Rapamycin (50 nM) or DMSO was added 10 minutes prior to plating.  Expression of 

SPARC and signaling intermediates in total cell extract (50 µg) was examined.  B, 

Relative expression of SPARC message levels by qPCR in MDA-MB-435/β4 cells 

clustered with integrin-specific antibodies.  C, Relative expression of SPARC message 

levels by qPCR following transient knockdown of β4 at 72 hours post-transfection in 

SUM-159 cells.  D, Expression of SPARC and signaling intermediates in total cell extract 

(50 µg) following transient knockdown of β4 at 72 hours post-transfection in SUM-159 

cells.  E, Expression of SPARC and signaling intermediates in total cell extract (50 µg) 

following treatment with 50 nM rapamycin.  F, SUM-159 cells were plated on laminin 

(LM) or maintained in suspension (S) for 45 minutes.  Rapamycin (50 nM) or DMSO 

was added 10 minutes prior to plating.  Expression of SPARC and signaling 

intermediates in total cell extract (50 µg) was examined.  G, Relative expression of 

SPARC message levels by qPCR in SUM-159 cells clustered on laminin (LM) or 

maintained in suspension. 
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Table S3.1.  miR-29a leading edge genes

Gene 
Symbol Gene Title

Rank in 
Gene List1

Rank Metric 
Score2

Running 
ES3

GPR37 G protein-coupled receptor 37 (endothelin receptor type B-like) 17 1.607 0.020
SHROOM2 shroom family member 2 70 1.054 0.030

HDAC4 histone deacetylase 4 90 0.960 0.041
TRIM9 tripartite motif-containing 9 92 0.952 0.053
MYBL2 v-myb myeloblastosis viral oncogene homolog (avian)-like 2 104 0.910 0.065
LOXL2 lysyl oxidase-like 2 113 0.873 0.075
FAM3C family with sequence similarity 3, member C 121 0.859 0.086
DCP2 DCP2 decapping enzyme homolog (S. cerevisiae) 134 0.829 0.096

TUBB2A tubulin, beta 2A 149 0.798 0.106
HMGN3 high mobility group nucleosomal binding domain 3 152 0.796 0.116
COL1A2 collagen, type I, alpha 2 153 0.795 0.126
KCTD3 potassium channel tetramerisation domain containing 3 158 0.786 0.137

MAPRE2 microtubule-associated protein, RP/EB family, member 2 169 0.769 0.146
GMFB glia maturation factor, beta 193 0.733 0.154

COL5A2 collagen, type V, alpha 2 196 0.727 0.163
FRAT2 frequently rearranged in advanced T-cell lymphomas 2 226 0.690 0.170
MLF1 myeloid leukemia factor 1 266 0.657 0.176

CNOT8 CCR4-NOT transcription complex, subunit 8 270 0.654 0.184
ZFP36L1 zinc finger protein 36, C3H type-like 1 279 0.644 0.192
SPARC secreted protein, acidic, cysteine-rich (osteonectin) 280 0.640 0.200
LAMC1 laminin, gamma 1 (formerly LAMB2) 283 0.638 0.209
PURA purine-rich element binding protein A 295 0.623 0.216
RERE arginine-glutamic acid dipeptide (RE) repeats 306 0.617 0.223
GAS7 growth arrest-specific 7 315 0.607 0.231
PPIC peptidylprolyl isomerase C (cyclophilin C) 316 0.606 0.239

SS18L1 synovial sarcoma translocation gene on chromosome 18-like 1 331 0.593 0.246
PER3 period homolog 3 (Drosophila) 337 0.587 0.253

PTP4A1 protein tyrosine phosphatase type IVA, member 1 339 0.587 0.261
PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha) 344 0.584 0.268
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TAF11 TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa 351 0.582 0.275
CREB5 cAMP responsive element binding protein 5 373 0.563 0.281
ATXN1 ataxin 1 399 0.548 0.286
CYCS cytochrome c, somatic 406 0.543 0.293

DNMT3B DNA (cytosine-5-)-methyltransferase 3 beta 412 0.540 0.300
PDHX pyruvate dehydrogenase complex, component X 435 0.527 0.305
FEM1B fem-1 homolog b (C. elegans) 457 0.516 0.310

MAPRE1 microtubule-associated protein, RP/EB family, member 1 468 0.513 0.316
CALM3 calmodulin 3 (phosphorylase kinase, delta) 520 0.484 0.319

HISPPD1 Histidine acid phosphatase domain containing 1 545 0.474 0.323
BLMH bleomycin hydrolase 548 0.474 0.329
INSIG1 insulin induced gene 1 563 0.465 0.334

JARID1B jumonji, AT rich interactive domain 1B 592 0.453 0.338
RHOBTB1 Rho-related BTB domain containing 1 597 0.452 0.344

RNF138 ring finger protein 138 633 0.438 0.347
EIF4E2 eukaryotic translation initiation factor 4E member 2 646 0.434 0.351
TRIB2 tribbles homolog 2 (Drosophila) 660 0.429 0.356
PMP22 peripheral myelin protein 22 666 0.427 0.361

DAAM2 dishevelled associated activator of morphogenesis 2 702 0.417 0.364
JARID2 jumonji, AT rich interactive domain 2 726 0.408 0.368
AIM1 absent in melanoma 1 738 0.405 0.372

OTUD4 OTU domain containing 4 741 0.404 0.377
ZHX3 zinc fingers and homeoboxes 3 760 0.397 0.381
RARB retinoic acid receptor, beta 766 0.395 0.386
PCGF3 polycomb group ring finger 3 779 0.392 0.390
MLXIP MLX interacting protein 814 0.382 0.393
REV3L REV3-like, catalytic subunit of DNA polymerase zeta (yeast) 871 0.368 0.393

SLC16A1 solute carrier family 16, member 1 (monocarboxylic acid transporter 1) 873 0.368 0.398
IFI30 interferon, gamma-inducible protein 30 881 0.367 0.402

DDEF2 development and differentiation enhancing factor 2 889 0.364 0.407
BAT2D1 BAT2 domain containing 1 908 0.360 0.410
SLC36A1 solute carrier family 36 (proton/amino acid symporter), member 1 909 0.359 0.415
DICER1 Dicer1, Dcr-1 homolog (Drosophila) 937 0.353 0.417
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DYNLT1 dynein, light chain, Tctex-type 1 1089 0.319 0.410
LYPLA1 lysophospholipase I 1091 0.318 0.414
PGAP1 - 1123 0.314 0.416
AKT3 v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma) 1141 0.310 0.419

NUDT11 nudix (nucleoside diphosphate linked moiety X)-type motif 11 1146 0.309 0.422
BRWD1 bromodomain and WD repeat domain containing 1 1165 0.305 0.425
KIF26B kinesin family member 26B 1171 0.303 0.429
SNX4 sorting nexin 4 1204 0.298 0.430

TRIM37 tripartite motif-containing 37 1216 0.295 0.433
PLXNA1 plexin A1 1234 0.291 0.436

SNRK SNF related kinase 1248 0.288 0.438
CDK6 cyclin-dependent kinase 6 1254 0.287 0.442

KCTD5 potassium channel tetramerisation domain containing 5 1323 0.277 0.440
DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked 1398 0.262 0.438

TDG thymine-DNA glycosylase 1406 0.261 0.441
KIAA0355 KIAA0355 1436 0.257 0.442

GSTA4 glutathione S-transferase A4 1462 0.253 0.443
PKNOX2 PBX/knotted 1 homeobox 2 1483 0.249 0.445
VANGL1 vang-like 1 (van gogh, Drosophila) 1503 0.246 0.447
ZNF282 zinc finger protein 282 1519 0.244 0.449

ISL1 ISL1 transcription factor, LIM/homeodomain, (islet-1) 1563 0.238 0.449
EPS15 epidermal growth factor receptor pathway substrate 15 1618 0.230 0.448
STX16 syntaxin 16 1625 0.229 0.450
CAV2 caveolin 2 1657 0.226 0.451

MGAT4A mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acetylglucosaminyltransferase, isozyme A 1681 0.222 0.452
COL4A5 collagen, type IV, alpha 5 (Alport syndrome) 1695 0.221 0.454
ABHD4 abhydrolase domain containing 4 1759 0.213 0.452
CCNJ cyclin J 1776 0.211 0.453
SIP1 survival of motor neuron protein interacting protein 1 1812 0.207 0.453

ISG20L2 interferon stimulated exonuclease gene 20kDa-like 2 1846 0.205 0.454
LRP6 low density lipoprotein receptor-related protein 6 1850 0.204 0.456
RLF rearranged L-myc fusion 1870 0.202 0.457

NKTR natural killer-tumor recognition sequence 1871 0.202 0.460

97



CPS1 carbamoyl-phosphate synthetase 1, mitochondrial 1899 0.200 0.460
NASP nuclear autoantigenic sperm protein (histone-binding) 2039 0.186 0.452
POLE3 polymerase (DNA directed), epsilon 3 (p17 subunit) 2047 0.184 0.454

KIAA0644 - 2050 0.184 0.456
NFAT5 nuclear factor of activated T-cells 5, tonicity-responsive 2084 0.180 0.456
CHFR checkpoint with forkhead and ring finger domains 2089 0.180 0.458
DBT dihydrolipoamide branched chain transacylase E2 2096 0.179 0.460

PARG poly (ADP-ribose) glycohydrolase 2106 0.178 0.462
MAFB v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (avian) 2179 0.171 0.459
CCNT2 cyclin T2 2211 0.168 0.458
ELF2 E74-like factor 2 (ets domain transcription factor) 2213 0.168 0.461

BCORL1 BCL6 co-repressor-like 1 2243 0.166 0.460
COL2A1 collagen, type II, alpha 1 (primary osteoarthritis, spondyloepiphyseal dysplasia, congenital) 2256 0.165 0.462

PLP1 proteolipid protein 1 (Pelizaeus-Merzbacher disease, spastic paraplegia 2, uncomplicated) 2289 0.162 0.461
PPP1R3D protein phosphatase 1, regulatory subunit 3D 2290 0.162 0.464

MEST mesoderm specific transcript homolog (mouse) 2322 0.158 0.463
JARID1A jumonji, AT rich interactive domain 1A 2346 0.156 0.464
ROBO1 roundabout, axon guidance receptor, homolog 1 (Drosophila) 2364 0.155 0.464
DNM3 dynamin 3 2378 0.154 0.465
UPK1B uroplakin 1B 2412 0.151 0.465
SOX12 SRY (sex determining region Y)-box 12 2415 0.151 0.467

1 Rank in Gene List refers to position of gene in list of β4-regulated mRNAs ranked in order of greatest change in expression
2 Rank Metric Score is the score used to position the genes in the ranked list
3 Running Enrichment Score (ES) reflects the degree to which the gene is overrepresented in the top of the ranked list of genes
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CHAPTER IV 

GENERAL DISCUSSION 

 

The integrin β4 was first identified as a tumor associated antigen whose 

expression correlated with metastatic disease (26).  This early observation was ostensibly 

at odds with its role as a mechanical device that maintained epithelial integrity.  Research 

over the past two decades has transformed our understanding of this integrin and 

characterized β4 as a dynamic cell surface receptor that mediates cytoskeletal 

organization and signal transduction, contributing to both physiological and pathological 

processes.  Its ability to potentiate carcinoma invasion is of particular importance and 

occurs in part through the regulation of downstream effector molecules.   

 

miRNA Expression Patterns 

The work presented in this dissertation documents the first example that integrin 

expression correlates with specific miRNA patterns.  Moreover, integrin β4 status in vitro 

and in vivo is associated with decreased expression of distinct miRNA families in breast 

cancer, namely miR-25/32/92abc/363/363-3p/367 and miR-99ab/100.  Further analysis 

identified overlapping predicted targets of these two miRNA families within a population 

of genes known to be downregulated by β4 based on published Affymetrix array data 

(76).  An overrepresentation of targets involved in cell migration was detected within this 

pool of genes, revealing unrecognized β4 targets potentially involved in promoting 

carcinoma progression.  Another miRNA, miR-29a, is significantly downregulated in 
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response to de novo expression of β4 in a breast carcinoma cell line.  Further study 

revealed that expression of this miRNA is inversely correlated with β4 status in several 

breast carcinoma cell lines.  β4-mediated repression of the miRNA is required for 

invasion, strengthening the link between miRNA expression patterns and cell motility 

downstream of β4 in the context of breast cancer.  Finally, gene set enrichment analysis 

detected an enrichment in predicted targets of several miRNA families identified by our 

screen, including miR-92ab and miR-29abc, within β4-regulated genes, substantiating the 

physiological significance of our data.  

An unexpected finding uncovered by our study is the observation that loss of β4 

in cells that endogenously express the integrin decreases the expression of miR-29a, 

results that are seemingly at odds with the aforementioned data.  Specifically, qNPA 

microarray analyses from SUM-159 breast carcinoma cells demonstrate a decrease in the 

expression of miR-29a upon transient depletion of β4, a finding confirmed by qPCR (data 

not shown).  Interestingly, family member miR-29b is also repressed.  Likewise, 

examination of the MCF10CA1a qNPA microarray identified a decrease in miR-29b and 

miR-29c in response to loss of β4 (Table 2-S1).   

Members of the miR-29 family of miRNAs are transcribed from two bicistronic 

loci, the miR-29b-1/a cluster on chromosome 7 and the miR-29b-2/c cluster on 

chromosome 1.  Therefore, miR-29a is generated exclusively from the miR-29b-1/a 

cluster, while miR-29c is generated exclusively from the miR-29b-2/c cluster.  Mature 

miR-29b, on the other hand, can be derived from transcription at either loci.  The array 

data, thus, illustrate a scenario involving β4-dependent maintenance of miR-29b 
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expression through regulation at distinct transcriptional loci.  As miRNA family members 

share seed regions and therefore largely overlapping pools of putative targets, one 

hypothesis extending from our finding is that two highly aggressive breast carcinoma cell 

lines have evolved distinct mechanisms to repress a population of genes through 

sustained expression of miR-29 family members.   

Regarding transcriptional regulation of these family members, efforts early in the 

course of our study were invested in exploring the role of β4 in the regulation of the miR-

29b-1/a cluster by β4.  Our initial observation that expression of the integrin in MDA-

MB-435 cells repressed both miR-29a and miR-29b prompted us to consider potential 

downstream effectors of β4 that might be involved in transcriptional repression.  An 

obvious candidate was NFAT, a transcription factor with an established role in promoting 

β4-mediated invasion in this system (74).  More recently, it has been shown to regulate 

the transcription of β4 targets including autotaxin/ENPP2 and S100A4/metastasin (75-

77).   

The NFAT family of transcription factors is comprised of five known members.  

With the exception of NFAT5, all are responsive to fluctuations in intracellular Ca++ 

concentration.  NFAT is activated upon deposphorylation by the upstream calcium-

responsive phosphatase calcineurin.  This event permits translocation of NFAT to the 

nucleus where it interacts with other transcriptional partners to regulate gene expression 

(237).  NFAT family members may be transcriptional activators or repressors depending 

upon the genetic context.  For example, NFAT1 has been shown to repress the 

transcription of cyclin-depdendent kinase 4 (CDK4) and cyclin A2 (238, 239), both of 
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which serve critical functions in cell-cycle regulation and cell proliferation, while 

upregulating genes involved in immune function, such as interleukin-2 (IL-2) (240).  

Based on the ability of β4 to upregulate NFAT family members and to promote an 

invasive phenotype, we examined the hypothesis that this factor serves as a 

transcriptional repressor of miR-29a.  Interestingly, a report published around this time 

revealed that NFATc3 promotes the transcription of miR-23a in a model of cardiac 

hypertrophy (241), demonstrating that members of this transcriptional family can regulate 

the expression of miRNAs.  Analysis using Genomatix MatInspector software identified 

four putative binding sites for NFAT1 in the 3Kb region upstream of the miR-29b-1/a 

transcription start site (242).  Nonetheless, chromatin immunoprecipitation (ChIP) 

experiments in the MDA-MB-435/β4 transfectants failed to demonstrate that NFAT1 

could bind any of these sites.  Moreover, treatment of these cells with pharmalogical 

agents FK506 and cyclosporine A, inhibitors of calcineurin function, did not induce 

expression at this locus as assessed by expression of mature miR-29a and miR-29b.  

During the course of our study, a report was published characterizing 

transcriptional regulation at the miR-29b-1/a locus.  Mott et al. demonstrated that c-myc, 

hedgehog, and NFκB can bind the promoter of the miR-29b-1/a cluster and induce 

transcriptional suppression as established by elecrophoretic mobility shift assays, 

signaling inhibition, and a luciferase reporter construct (243).  

In retrospect, our finding that NFAT did not repress transcription at the miR-29b-

1/a locus downstream of β4 in the MDA-MB-435 system was not surprising given the 

fact that β4 may not actually function to repress transcription of this cluster based on the 
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observation that loss of the integrin decreased the expression of miR-29 family members 

in two other breast carcinoma cell lines.  While expression of β4 clearly appears to 

impact these miRNAs, the role of the integrin in this process appears complicated and 

context dependent.  To delve deeper into the issue, we employed the miR-29b-1/a 

promoter luciferase reporter construct developed by Mott et al. mentioned above to 

determine whether β4 repression of transcription at this site could account for reduced 

levels of mature miR-29a observed in MDA-MB-435/β4 transfectants.  The results were 

again surprising.  While expression of both miR-29a and miR-29b is downregulated in 

the β4 transfectants compared to mock transfectants based on the qNPA microarray and 

qPCR, increased transcriptional activity was detected at the miR-29b-1/a promoter in the 

β4 transfectants compared to the mock transfectants (data not shown).  Moreover, these 

data complement observations that ligation of β4 by antibody-mediated clustering 

modestly increased mature miR-29a levels in the β4 transfectants on a few occasions 

(data not shown).   

 Due to this unexpected result and concerns regarding the artificial nature of these 

luciferase experiments, we considered the possibility that our data were not accurately 

reflecting activity at the endogenous promoter.  Reports have linked cancer to 

inappropriate methylation of CpG islands in miRNA promoters (126, 244).  Along these 

lines, evidence in the literature indicates the presence of one CpG-enriched site 

containing five CpG nucleotide pairs in the promoter of this cluster, and that expression 

of these miRNAs can be linked to epigenetic modifications at this island (245).  Based on 

these observations, we could postulate that β4 induces changes in the methylation profile 

103



at this CpG site to induce transcriptional silencing in the MDA-MB-435 system.  While 

β4 itself undergoes complex epigenetic modifications during the EMT (246), the integrin 

has never been shown to regulate such modifications in downstream targets nor induce 

the activity of enzymes involved in this process.  Bisulfite sequencing of this site in mock 

and β4 transfectants would prove informative in this context.   

While the luciferase data and ligation data corroborate the results from the array 

analysis and qPCR in the SUM-159 and MCF10CA1a cells, the disconcordance between 

promoter activity and mature miR-29a and miR-29b levels in the MDA-MB-435 system 

suggests some post-transcriptional phenomenon unique to these cells.  One possibility is 

that the exogenous β4 integrated into the genome in a position that somehow affected 

miR-29a biogenesis.  This hypothesis is unlikely given the fact that the integrin 

undergoes random integration into the genome, and two independent subclones both 

demonstrate repressed levels of miR-29a.  Though unlikely, it is possible that some 

selective advantage was conferred to subclones in which the integrin integrated in a 

particular position.  In this situation, perhaps integration might interrupt processing 

machinery genes, for example, involved in miR-29a biogenesis.  This is also unlikely 

given the fact that our analysis of the published Affymetrix array data showed no change 

in the several genes critical for miRNA maturation (data not shown).  It is further 

unlikely given the fact that the same machinery processes nearly all miRNAs, and the 

effect of β4 expression on miRNA patterns is not global enough to claim widespread 

defects in miRNA biogenesis.   
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Another hypothesis that could account for this incongruity is that the MDA-MB-

435 system is unique in its ability to impact miRNA stability.  Perhaps β4 generally 

upregulates expression of these miRNAs but in this system also promotes their decay or 

interferes with their biogenesis.  The most well studied example of miRNA decay 

involves regulation by LIN-28.  Interestingly, high levels of pri-let-7 transcript are 

detected in embryonic stem cells (ESCs) and other progenitor cells despite low levels of 

the mature miRNA (247).  This discrepancy results from a processing defect in which 

LIN-28 binds to the hairpin region of the primary miRNA and impedes cleavage by 

Drosha (248).  Interaction of LIN-28 with pre-let-7 can also prevent Dicer-mediated 

cleavage.  Specifically, LIN-28 recruits TUT4, a terminal poly(U) polymerase, and 

induces 3’-terminal polyuridylation of the precursor, which blocks processing by Dicer 

(249-253).  The uridylated precursor is then targeted for degradation by an unknown 

RNase (251).   

Though this phenomenon has only been reported in let-7 family members (248, 

251), it is feasible that a mechanism affecting miR-29a stability could account for low 

levels of the mature miRNA.  Decay of miR-29b, for example, has already been 

described in cycling HeLa cells, wherein the miRNA is subject to nuclear localization 

and rapid degradation resulting from a unique trafficking motif on its 3’ end (200).  Of 

particular interest, members of the let-7 family of miRNAs were determined by our 

analyses to be downregulated in response to β4 expression (Table 2.2).  Furthermore, let-

7 is thought to function as a tumor suppressor, targeting oncogenes such as myc (254).  

This factor has been linked to the transcriptional repression of the miR-29b-1/a cluster 
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(243), raising the possibility that β4 indirectly regulates miR-29a through a mechanism 

involving let-7.  Regardless of the mechanism by which low mature miR-29a levels are 

generated in the MDA-MB-435/β4 transfectants, analysis of primary and presursor levels 

of the miRNA would be enlightening.  For example, if expression profiles of pri-miR-29a 

across β4 and mock transfectants paralleled the luciferase promoter activity, but levels of 

pre-miR-29a were equivalent to mature levels, we would conclude that processing of the 

primary miRNA by the Drosha microprocessor did not proceed as expected.  The effect 

of clustering on transcriptional activity at the miR-29b-1/a locus as assessed by the 

luciferase reporter construct could also potentially clarify these discrepant data. 

Another possibility is that cells null for β4 express unusually high levels of miR-

29 family members, and that introduction of the integrin into the system represses its 

expression.  Over time, other mechanisms evolve to maintain suppression, and the 

integrin assumes a positive role in their regulation rather than a negative one.  This 

hypothesis is consistent with our observation that miR-29a correlates with β4 status in a 

collection of breast carcinoma cell lines (Fig. 3.2D).  This hypothesis that β4 can buffer 

miR-29 levels is intriguing, though information pertaining to absolute levels of the 

miRNAs would be useful in testing this idea.  Deep sequencing could provide more 

specific information in this direction.  It would further be of interest to determine whether 

a correlation exists between the amount of functional integrin in a cell and resulting 

levels of miR-29 family members.  Additionally, SUM1315 cells, which do not 

endogenously express the integrin, could be used to generate β4 transfectants.  If this 

hypothesis were correct, cells expressing β4 should have lower levels of miR-29 than 
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SUM1315 parental cells.  Unfortunately, developing cell lines that express functional β4 

is not a trivial task, because the integrin must be appropriately trafficked to the membrane 

and expressed at physiological levels to recapitulate behavior observed in cells that 

endogenously express it.  One flaw with the buffering hypothesis is the fact that most 

epithelial cells and many breast carcinomas express β4, so repression of miR-29a in 

response to the integrin may not be biologically relevant with respect to β4-mediated cell 

motility. 

The hypothesis that β4 actually sustains expression of miR-29 family members 

challenges our interpretation of their role in carcinoma invasion.  Clearly, our data and 

others have established a role for repression of miR-29a in the invasive process both in 

vitro and in vivo (255, 256).  Furthermore, the level of miR-29a in β4 positive tumors is 

significantly reduced compared to β4 negative tumors in the qNPA microarray (Table 

S2.3), and it is very well established that β4 promotes invasion.  One possibility is that 

miR-29a undergoes differential regulation by β4 to enhance cell motility depending upon 

the context.  For example, repression of miR-29 might permit enhanced expression of 

genes like matrix metalloproteinases (MMPs) involved in promoting invasion in some 

settings, while increased miR-29 might block genes that mediate cell adhesion in focal 

contacts.  Thus, miR-29 promotes an invasive phenotype but accomplishes this end 

through selective regulation of different genes pools.  Clearly many molecules have dual 

biological functions; integrins are a prime example, as they mediate stable adhesions but 

also facilitate cell motility and cytoskeletal dynamics.  
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The exact nature of the biological contexts in which miR-29 family members 

could be differentially regulated by β4 remains to be seen.  Perhaps integrin conformation 

contributes to this process.  It has been established that the MDA-MB-435 system can 

function in a ligand-independent manner, as discussed in Chapter I.  One possibility 

extending from these observations is that the integrin is in an active conformation with an 

open headpiece at the cell surface or is constitutively active due to a mutation that 

prevents association of the transmembrane legs of the α and β subunits.  Such events 

could promote signaling cascades not observed in cells in which the integrin is 

endogenously expressed and unbound by ligand.  Crystallography to ascertain the 

conformation of the integrin at the cell surface in the β4 transfectants, however, is 

obviously not a useful pursuit.   

Perhaps an easier, though less structurally informative, approach to determining 

whether β4 is constitutively active in the β4 transfectants would be to examine basal 

levels of signaling intermediates in pathways known to be activated by the integrin.  

Notably, levels of pAkt and p4E-BP1 are elevated in the β4 transfectants compared to 

mock transfectants in the absence of ligand (95). This raises the question as to whether 

activation of signaling pathways occurs in response to transfection as a sort of stress 

response, since it has been established that p85, the catalytic subunit of PI3K, can play a 

role in activating JNK (c-Jun N-terminal kinase) stress pathways (257).  However, levels 

of signaling intermediates in cells that have been depleted of endogenously expressed β4 

are also diminished (255).  These observations refute the hypothesis that constitutive 

activity of the integrin is unique to the β4 transfectants, thus, accounting for the 
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biological context in which miR-29a is differentially regulated.  These data do, however, 

strongly suggest that secretion of endogenous ligand plays a role in β4 signaling across 

systems, perhaps accounting in part for the phenomenon of ligand-independent signaling 

and function to be discussed below.  Nonetheless, it is likely that autocrine laminin does 

not entirely justify the ligand-independent function as evidenced by the fact that a 

truncated β4 containing only the transmembrane and cytoplasmic domains still confers 

signaling potential (69, 88). 

What likely matters more in the regulation of miR-29 family members is the 

larger biological context.  As described in the second chapter of this dissertation, β4 

expression correlates with differential expression of many miRNAs and miRNA families.  

The idea that β4 can regulate networks of miRNAs, which in turn regulate pools of target 

genes is likely a more physiologically accurate depiction.  These networks are important 

for fine-tuning gene expression and coordinating specific cellular functions, thus 

examination of a single miRNA might not prove very practical or informative.  

Along these lines, targeting of large gene pools by miR-29a is likely more 

biologically accurate than the idea that miR-29a regulates a single downstream target, 

such as SPARC, to promote invasion.  Inspection of putative targets of this miRNA 

reveals a number of potentially interesting genes.  Among these, three laminin chain 

isoforms are predicted targets of miR-29a: α2, γ1, and γ2.  In fact, a report exploring the 

role of family member miR-29c in nasopharyngeal carcinoma confirmed that γ1 is a 

bonafide target of the miRNA (258).  Laminins are heterotrimeric glycoproteins 

composed of a single α, β, and γ chain that assemble in a cross-like configuration (259).  
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Nomenclature for this family of proteins derives from the isoform of each chain, e.g. 

laminin-332 represents α3, β3, and γ2 (260).  The γ1 and γ2 chains are intriguing targets 

based on their links to carcinoma progression.  Specifically, overexpression of laminin-

511 correlates with the aggressive phenotype of invasive breast cancers (261, 262).  

Overexpression of laminin-332 is associated with poor prognosis in a variety of cancers, 

though the role of this isoform in breast cancer is less clear.   While downregulation of 

laminin-332 has been reported (263), a recent article identified elevated levels of the 

isoform, in particular the γ2 chain, in the interface zone of invasive ductal carcinoma 

(264).  

The hypothesis that β4 could regulate secretion of its own ligand through a 

miRNA-dependent mechanism is an intriguing idea, particularly given the report that the 

integrin functions in a laminin-332 autocrine loop to promote survival of anchorage-

independent breast carcinoma cells in a three-dimensional environment (98).  Neoplastic 

cells are believed to secrete their own matrix proteins (265, 266), conferring a selective 

advantage in the metastatic environment.  This phenomenon could revise our 

understanding of the ligand-independent function attributed to β4 in tumor cells, which 

might in part represent an autocrine loop involving secretion of endogenous laminin, 

subsequent ligand-binding, and integrin activation.  Such a pathway could provide a 

novel mechanism for β4-mediated carcinoma invasion.  Interestingly, a report from the 

literature indicates that laminin-332, the preferred ligand for β4, is not expressed in 

MDA-MB-435 cells (267).  In concordance with this study, our examination of the γ2 

chain of laminin in both β4 and mock transfectants revealed nearly undetectable levels of 
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the protein.  Furthermore, inhibition of miR-29 in the mock transfectants using a 

functional inhibitor failed to induce γ2 expression (data not shown).  Perhaps this is not 

surprising since these cells do not express β4 endogenously and might not have, 

therefore, evolved mechanisms to signal through the integrin in an autocrine manner.  

These cells do express α6β1, though, another laminin-binding integrin.  Nonetheless, we 

examined a cell line that endogenously expresses the integrin, SUM-159 cells.  Again, 

manipulation of miR-29a in these cells had no effect on γ2 protein expression.  These 

observations do not negate the possibility β4 can potentiate carcinoma invasion through 

miR-29a-dependent regulation of laminin, as the γ1 chain present in laminin-111 and 

laminin-511 might also function as a target, nor to they exclude the potential for β4 to 

execute this autocrine loop through regulation of another miRNA.  

Another potentially interesting target of miR-29a is p85, the regulatory subunit of 

the PI3K.  Perhaps elevated levels of phosphorylated Akt observed in the β4 transfectants 

are attributable to increased overall expression of the upstream lipid kinase.  A recent 

study reported that miR-29a targets p85, thereby inducing p53-dependent apoptosis in 

breast carcinoma cells (Park et al. 2009).  As before, no detectable difference in p85 

protein expression was appreciable between β4 and mock transfectants, and manipulation 

of miR-29a did not induce a change in p85 expression.  Furthermore, a point mutation in 

the p53 gene in these cells renders the tumor suppressor incapable of inducing apoptosis 

(93, 268).  A recent report does, however, suggest that β4 confers a proliferative 

advantage mediated by signaling through mitogen-activated protein kinase (MAPK) and 

Mnk (269).  Retrospectively, our observations that protein levels of both γ2 and p85 were 
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unchanged in the β4 transfectants compared to control is not surprising given the fact that 

our analysis of the published Affymetrix array failed to identify a change in transcript 

levels of these two genes, meaning that miR-29a-mediated regulation of their expression 

in this setting unlikely due to the fact that most miRNAs induce changes in mRNA levels 

that parallel changes in protein levels (125).    

 

SPARC 

Another major conclusion of this study is that β4 integrin expression and ligation 

can regulate the expression of SPARC in breast carcinoma cells, a phenomenon that 

further enhances our understanding of how β4 contributes to chemoinvasion.  Our data 

reveal distinct mechanisms by which β4 promotes SPARC expression.  Specifically, in 

cells lacking expression of the integrin, introduction of β4 decreases miR-29a levels 

while concomitantly increasing the expression of SPARC.  Ligation of the integrin in this 

system can further induce SPARC expression through a TOR-dependent translational 

mechanism.  Likewise, in cells that express β4 and, thus, low levels of the miRNA, 

ligation of the integrin also enhances SPARC translation.  Furthermore, SPARC is 

required for the invasive phenotype downstream of integrin β4.  Our observation that 

distinct mechanisms have evolved in cells to regulate SPARC expression downstream of 

β4 suggests that this event is biologically significant.    

While these data suggest that translational and miR-29a-mediated mechanisms 

occur independently to regulate SPARC expression, they do not exclude the possibility 

that these two phenomena may be functionally linked.  For example, miR-29a may 
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directly regulate SPARC by binding to its 3’UTR to silence expression, as well as target 

translational machinery involved in biosynthesis of the protein.  Interestingly, miR-100, 

one of two miRNAs downregulated across all three of our arrays in response to β4 

expression, has been shown to target mTor, a kinase involved in promoting cap-

dependent translation (270, 271).  Assessing the ability of β4 to induce SPARC 

expression upon ligation by laminin or antibody-mediated clustering in cells 

overexpressing miR-29a could help to explore this possibility.  

It is possible that β4 mediates SPARC expression through additional mechanisms.  

Early studies into the mechanism of β4-regulation of this protein included examination of 

other signaling pathways regulated by the integrin.  Specifically, we tested the effect of 

PD98059 on SPARC expression in the MDA-MB-435/β4 transfectants.  PD98059 is a 

potent inhibitor of MEK, a kinase upstream of ERK 1/2 in the Ras/MAPK pathway.  

Preliminary evidence suggests that expression of SPARC decreases upon treatment with 

the MEK inhibitor (data not shown).  Interestingly, a recent study reported that ribosomal 

S6 kinases RSK1 and RSK2 are effectors of the Ras/MAPK signaling pathway and 

induce an invasive phenotype in breast carcinoma cells in part through transcription 

factor FRA1 (272).  Earlier reports also link FRA1, a Fos homologue, to the migratory 

phenotype of breast carcinoma cells (273-275).  Such observations are particularly 

intriguing in light of the fact that c-Jun/FRA1 heterodimers can bind to the SPARC 

promoter in vitro (276), raising the possibility that β4 can signal through the 

Ras/MAPK/RSK pathway to induce FRA1-dependent transcription of SPARC.   

The possibility that β4 promotes SPARC transcription does not exclude miRNA-
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mediated or translational mechanisms.  In fact, computational analyses have recently 

confirmed the presence of type II circuits in mammalian cells, networks in which 

transcription of a miRNA and its target gene are oppositely regulated by upstream events, 

thereby reinforcing expression of the target gene (277).  This is consistent with the idea 

that miRNAs generally produce subtle effects on target gene expression (108), and that 

SPARC expression in the MDA-MB-435/β4 transfectants was dramatically increased 

(Fig. 3.1B).  Furthermore, a transcriptional phenomenon might be unique to the MDA-

MB-435 system, as depletion of β4 in the SUM-159s downregulated SPARC protein 

without affecting mRNA levels.  

As an aside, the use of signaling inhibitors to identify pathways through which β4 

represses mature miR-29a expression in this system was initially appealing.  While 

concerns regarding the half-life of the miRNA made interpretation of clustering 

experiments unfeasible, concerns about the stability of miR-29a are no longer at play in 

this context due to the fact that inhibition of signaling pathways would in theory increase 

expression of miR-29a.  Nevertheless, results were inconsistent across the board, and we 

were ultimately unsuccessful at derepressing expression of the miRNA through inhibition 

of any known pathways downstream of integrin β4. 

An intriguing, though somewhat unrelated, conclusion drawn from work on RSK 

as a downstream effector of Ras/MAPK involves the fact that integrin β4 is one of the 

pro-invasive genes whose expression is upregulated in response to signaling through this 

pathway.  As ligation of β4 can induce Ras/MAPK signaling, these observations raise the 

possibility that such an event could positively feedback to increase β4 transcription and 
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expression, enhancing the biological potency of this integrin during carcinoma invasion.  

Although reports indicate that β4 induces activation of the Ras/MAPK pathway to 

promote carcinoma invasion (81), signal transduction through this pathway appears to be 

most significant in the context of anchorage-independent growth within the MDA-MB-

435 system (68).   

An extension of this hypothesis is that SPARC might also participate in a positive 

feedback loop and serve to modulate β4 expression and function.  SPARC is involved in 

a myriad of cellular processes, including the ability to regulate growth factor and integrin 

signaling pathways.  This phenomenon has been studied largely in the context of 

angiogenesis, where SPARC has been shown to bind VEGF-A and drive VEGF-

A/VEGFR2-mediated signaling and angiogenesis in a model of choroidal 

neovascularization (220, 278, 279).  SPARC is also known to directly bind PDGF family 

members to modify cell behavior (221, 280) and to indirectly regulate fibroblast growth 

factor 2 (FGF2)-induced signaling (281).  The role of SPARC in the regulation of TGF-

β1 signaling is also well established, as SPARC can either induce or antagonize signaling 

through this pathway depending upon the cellular milieu (226).   

Perhaps most interesting in the context of this dissertation is the ability of SPARC 

to affect integrin expression and signaling.  Interestingly, SPARC has been shown to bind 

β1, an integrin subunit that can pair with α6 as a laminin receptor, to induce signaling 

through integrin-linked kinase (ILK) in lens epithelial cells (224).  The ability of SPARC 

to induce ILK has also been extended to a glioma model, in which loss of SPARC 

impedes tumor cell survival and invasion associated with decreased ILK and FAK 
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activity (215).  SPARC-mediated regulation of ILK has also been shown to regulate 

extracellular matrix remodeling (222).  Furthermore, SPARC can induce integrin-

mediated migration in both prostate carcinoma and dental pulp cells through interaction 

with αV integrin family members (282, 283).  Other data, to the contrary, suggest that 

SPARC can antagonize the expression of α6 (284) and αV (285) integrins in different 

settings.  These observations coupled to the fact that SPARC can promote signaling 

through PI3K (213, 286) raise the possibility that interaction of SPARC with cell surface 

receptors or even β4 could induce expression or signaling events downstream of this 

integrin. 

Along the lines of feedback loops, SPARC could potentially function to impact 

the expression of miR-29 family members.  While miRNAs are classically thought to 

participate in unidirectional gene regulation, accumulating evidence reveals that feedback 

loops involving miRNA targets function to regulate the expression of select miRNAs 

through complex regulatory networks (287).  While SPARC has not been linked to 

signaling pathways implicated in miR-29b-1/a transcriptional repression, namely c-myc, 

hedgehog, and NFκB, additional investigation may establish a connection between 

SPARC and these transcriptional effectors.  Alternatively, further characterization of the 

miR-29b-1/a promoter may identify other factors that participate in the regulation of 

miR-29 family members downstream of SPARC-mediated signaling events.  

Further evidence that β4 can regulate SPARC through various mechanisms stems 

from the MDA-MB-435 TrkB system generated previously by our laboratory.  TrkB is a 

cell surface receptor involved in neuronal guidance and is analogous in many ways to 
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integrins (288).  Interestingly, brain-derived neurotrophic factor (BDNF), the ligand for 

TrkB, shares similarities with laminin (289).  A chimeric receptor was generated by 

fusing the TrkB extracellular domain to the cytoplasmic and intracellular domains of β4.  

A truncated TrkB construct consisting of the extracellular and cytoplasmic domains of 

this neuronal receptor was generated as a control.  The results of functional analyses 

using this TrkB system revealed that the cytoplasmic domain of β4 contains intrinsic 

signaling potential but is not sufficient to transduce all signals that have been attributed to 

the full-length integrin (69).  Specifically, upregulation of the SFK signaling pathway 

occurs in response to dimerization of the chimeric receptor, while induction of PI3K and 

Ras/MAPK signaling pathways are not detectable.   

We chose to examine SPARC expression in the TrkB system.  Surprisingly, our 

analysis revealed that TrkB β4 infectants express higher levels of SPARC in both the 

total cell lysate and the culture media compared to cells expressing the truncated TrkB 

construct (data not shown), suggesting that neither the extracellular domain nor ligation 

of the integrin by laminin are required for β4-regulation of SPARC.  Moreover, due to the 

fact that Akt phosphorlyation is not induced by dimerization of the chimeric receptor, it 

seems unlikely that the changes in SPARC expression could be attributable to a TOR-

dependent translational mechanism, as Akt is a kinase upstream of 4E-BP1 in the mTOR 

signaling pathway.  Instead, members of the Src family of kinases might contribute to 

SPARC regulation.  Notably, treatment of MDA-MB-435/β4 transfectants with PP2, an 

inhibitor of SFKs, failed to consistently decrease SPARC expression; however, these 
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cells are inherently different than the TrkB β4 system and may employ different 

mechanisms to regulate SPARC.  

Palmitoylation of β4 is critical for trafficking of the intergrin to tetraspanin-

enriched microdomains on the cell surface.  This process, in turn, permits cell spreading 

and signaling through p130 Crk-associated substrate (p130CAS) (63), an integrin adapter 

protein involved in cytoskeletal remodeling, focal adhesion turnover, and cell migration 

(290).  This signaling intermediate is often phosphorylated by members of the Src family 

of kinases and FAK (290).  Along these lines, it would be interesting to determine 

whether β4 palmitoylation and localization in tetraspanin-enriched microdomains 

promotes SPARC expression, as data from the TrkB/β4 system suggests a role for SFKs 

in β4-mediated regulation of this protein.   

Integrin β4 has been shown to cooperate with growth factor receptors to promote 

activation of signaling cascades and carcinoma invasion.  These findings prompted us to 

consider the possibility that β 4-regulation of SPARC, and in turn invasion, occurs 

through collaboration with another cell surface receptor.  Work previously published by 

our laboratory investigated the ability of specific factors to cooperate with β4 to promote 

the chemotaxis of MDA-MB-435/β4 transfectants.  Of the growth factors examined, 

including EGF, basic fibroblast growth factor, HGF, insulin-like growth factor type I, 

TGF-α and -β, PDGF (AA and BB), somatostatin, thrombin, and lysophosphatidic acid 

(LPA), only LPA induced chemotaxis at levels comparable to NIH-3T3 conditioned 

media (78).  Furthermore, this factor induced the formation of large ruffling lamellae, a 

phenomenon specific to the β4 transfectants.  Findings from this study and others suggest 
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that LPA binds heterotrimeric Gi proteins on the cell surface of the MDA-MB-435 cells 

to mediate these effects (78, 291).  Based on the data reported in this study, we tested 

whether LPA could induce SPARC expression in these cells.  Despite observing the 

appropriate morphological changes in response to LPA treatment, we did not detect an 

increase in SPARC expression (data not shown), raising the likely possibility that β4 

functions independently to regulate this downstream effector. 

A remaining question generated from our work involves the mechanism by which 

SPARC promotes invasion.  One likely possibility, as explored above, involves its ability 

to mediate integrin dynamics and expression.  Moreover, SPARC is known to induce 

signaling pathways important for invasion, such as PI3K.  Whether such signal 

transduction occurs in concert with integrin function remains to be seen.  Another 

possibility is that SPARC is involved in focal adhesion turnover.  Early studies 

examining the ability of SPARC to impact interactions between cells and their 

environment established that addition of this counter-adhesive protein to bovine aortic 

endothelial cells decreases the formation of focal adhesions and promotes redistribution 

of actin to peripheral regions of the cell (292).  Given these findings, as well as the fact 

that SPARC can induce the activity of FAK, the primary signaling protein involved in 

focal adhesion turnover, it is possible that SPARC functions downstream of β4 in this 

capacity to promote cell motility.  Regulation of MMPs is another likely path through 

which SPARC promotes invasion.  Members of this family of proteolytic proteins are 

considered to be the primary regulators of matrix proteolysis and turnover, and their role 

in promoting the invasive behavior of tumor cells is well established (293).  SPARC is 
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known to induce activity of MMPs through a direct interaction with α helices of its E-F 

hand region (294).  In breast cancer, SPARC is known to upregulate MMP-2 activation 

(210), giving rise to the possibility that β4-induced expression of SPARC functions to 

activate MMPs involved in promoting invasion. 

 

Concluding Remarks 

 The work presented in this dissertation enhances our understanding of integrin 

function and regulation of downstream effector molecules.  Specifically, our data define a 

novel role for β4 in promoting cell motility in breast cancer.  Expression of this integrin 

correlates with distinct miRNA patterns, potentially important for driving cell behavior 

downstream of the integrin.  Additional work is necessary to dissect the mechanism by 

which β4 induces differential expression among members of this regulatory class of small 

RNAs.  Whether such effects arise through transcriptional changes, modifications in 

biogenesis, or influences on stability remains to be seen.  Furthermore, characterizing 

more fully the contribution of miRNAs to the invasive process will be of value, 

particularly through identification and confirmation of downstream targets aside from 

SPARC.  While this study has focused on the ability of differentially expressed miRNAs 

to potentiate an invasive phenotype in carcinoma cells, future work will investigate the 

ability of such miRNAs to participate in other functions mediated by β4 integrin, 

including hemidesmosome organization, anchorage-independent growth, and cell 

survival. 
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  While the material presented in this dissertation explores the role of β4 integrin in 

the context of carcinoma progression, specifically in the process of invasion, it has been 

well established that the integrin functions under normal conditions to maintain 

homeostasis.  For example, in the breast, β4 is expressed in contractile myoepithelial cells 

that separate the secretory luminal cells of mammary alveoli from the underlying 

basement membrane (295), whereas in the skin, the integrin is expressed in basal 

keratinocytes at epidermis-dermis interface and maintains epithelial integrity (40, 41).  

Studies exploring the mechanisms that mediate wound closure in keratinocytes have 

established an important role for β4 in this phenomenon, one that necessitates effective 

cell migration and parallels the process of tumor cell invasion (38).  The idea that SPARC 

or specific miRNAs might play a role in reepithelialization or maintaining general 

homeostasis is intriguing.  Monitoring changes in the expression of these effector 

molecules in keratinocytes during a scratch assay, which functions as an in vitro method 

of monitoring cell migration, could shed light on this question.  Furthermore, the ability 

of SPARC or specific miRNAs to modulate wound closure in this setting could be 

assessed following manipulation of their expression levels.   

From a clinical standpoint, the idea of miRNAs as targets in cancer therapeutics 

has gained increasing attention.  The recognition that aberrant miRNA expression 

contributes to human disease has prompted an interest in the development of strategies 

aimed at correcting the inappropriate deficiency or accumulation of specific miRNAs.  In 

most cancers, miRNA expression is globally downregulated.  Targeted therapies will, 

therefore, likely focus on reintroduction of select miRNAs and augment current 

121



chemotherapeutic regimes.  Delivery of these agents could be accomplished through 

infection of cancer cells using viral vectors that encode short hairpin RNAs; these 

hairpins would be subject to processing by endogenous miRNA biogenesis machinery 

upon transcription (296).  Advances in this field of research may ultimately hinder cancer 

progression and improve prognosis and outcome in patients with aggressive disease. 
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