7 research outputs found

    USF2 inhibits C/EBP-mediated transcriptional regulation of the RIIβ subunit of cAMP-dependent protein kinase

    Get PDF
    BACKGROUND: Cyclic AMP-dependent protein kinase (PKA) plays a central role in regulation of energy metabolism. Upon stimulation of testicular Sertoli cells by follicle stimulating hormone (FSH), glycolysis is activated to increase the production of nutrients for the germ cells, and a new regulatory subunit of cAMP-dependent protein kinase, RIIβ, is induced. We have previously shown that production of the transcription factor C/EBPβ is rapidly increased by FSH and cAMP in primary Sertoli cell cultures, and that C/EBPβ induces the RIIβ promoter. RESULTS: In this work we show that USF1, USF2 and truncated USF isoforms bind to a conserved E-box in the RIIβ gene. Interestingly, overexpression of USF2, but not USF1, led to inhibition of both cAMP- and C/EBPβ-mediated induction of RIIβ. Furthermore, Western blots show that a novel USF1 isoform is induced by cAMP in Sertoli cells. CONCLUSIONS: These results indicate that the expression of various USF isoforms may be regulated by cAMP, and that the interplay between USF and C/EBPβ is important for cAMP-mediated regulation of RIIβ expression. The counteracting effects of USF2 and C/EBPβ observed on the RIIβ promoter is in accordance with the hypothesis that C/EBP and USF play opposite roles in regulation of glucose metabolism

    Regulation of PBX3 expression by androgen and Let-7d in prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pre-leukemia transcription factor 3 (PBX) is part of the PBX family of transcription factors, which is known to regulate genes involved in differentiation of urogenital organs and steroidogenesis. This is of interest with regard to prostate cancer progression as regulation of steroidogenesis is one of the mechanisms involved in the development of castration-resistant prostate cancer. In light of this we wanted to investigate the possible involvement of androgen regulation of PBX3 expression in prostate cancer.</p> <p>Results</p> <p>In this study, we show that PBX3 is post-transcriptionally regulated by androgen in prostate cancer cells and that the effect might be independent of the androgen receptor. Furthermore, PBX3 was identified as a target of Let-7d, an androgen regulated microRNA. Let-7d was down-regulated in malignant compared to benign prostate tissue, whereas up-regulation of PBX3 expression was observed.</p> <p>Conclusions</p> <p>We demonstrate that PBX3 is up-regulated in prostate cancer and post- transcriptionally regulated by androgen through Let-7d.</p

    β-Adrenergic Receptor Signaling in Prostate Cancer.

    Get PDF
    Enhanced sympathetic signaling, often associated with obesity and chronic stress, is increasingly acknowledged as a contributor to cancer aggressiveness. In prostate cancer, intact sympathetic nerves are critical for tumor formation, and sympathectomy induces apoptosis and blocks tumor growth. Perineural invasion, involving enrichment of intra-prostatic nerves, is frequently observed in prostate cancer and is associated with poor prognosis. β2-adrenergic receptor (ADRB2), the most abundant receptor for sympathetic signals in prostate luminal cells, has been shown to regulate trans-differentiation of cancer cells to neuroendocrine-like cells and to affect apoptosis, angiogenesis, epithelial–mesenchymal transition, migration, and metastasis. Epidemiologic studies have shown that use of β-blockers, inhibiting β-adrenergic receptor activity, is associated with reduced prostate cancer-specific mortality. In this review, we aim to present an overview on how β-adrenergic receptor and its downstream signaling cascade influence the development of aggressive prostate cancer, primarily through regulating neuroendocrine differentiation

    Systemic interrogation of immune-oncology-related proteins in patients with locally advanced prostate cancer undergoing androgen deprivation and intensity-modulated radiotherapy

    No full text
    PURPOSE: The primary objective was to establish whether blood-based leucine-rich alpha-2-glycoprotein (LRG1) can predict outcomes in patients with locally advanced prostate cancer undergoing androgen-deprivation therapy (ADT) and radiotherapy (RT) and to determine how it may relate to 92 immune-oncology (I-O)-related proteins in this setting.METHODS: Baseline blood level of LRG1 from patients treated with ADT and RT enrolled in the CuPCa (n = 128) and IMRT (n = 81) studies was measured using ELISA. A longitudinal cohort with matched blood samples from start of ADT, start of RT, and end of RT protocol from 47 patients from the IMRT cohort was used to establish levels of I-O proteins by high-multiplexing Proximal Extension Assay by Olink Proteomics. Statistical analyses using Kaplan-Meier, Cox regression, and LIMMA analyses were applied to predict the prognostic value of LRG1 and its correlation to I-O proteins.RESULTS: High baseline levels of LRG1 predicted a low frequency of treatment failure in patients undergoing ADT + RT in both the CuPCa and the IMRT cohorts. LRG1 was moderately correlated with CD4, IL6, and CSF1. We identified I-O proteins predicting metastatic failure (MF) at different timepoints.CONCLUSION: LRG1 biomarker is associated with I-O proteins and can be used to improve stratification and monitoring of prostate cancer patients undergoing ADT + RT. This work will require further in-depth analyses in independent cohorts with treatment outcome data.</p

    The β2-Adrenergic Receptor Is a Molecular Switch for Neuroendocrine Transdifferentiation of Prostate Cancer Cells

    No full text
    The incidence of treatment-related neuroendocrine prostate cancer (t-NEPC) is rising as more potent drugs targeting the androgen signaling axis are clinically implemented. Neuroendocrine transdifferentiation (NEtD), an putative initial step in t-NEPC development, is induced by androgen-deprivation therapy (ADT) or anti-androgens, and by activation of the β2-adrenergic receptor (ADRB2) in prostate cancer cell lines. Thus, understanding whether ADRB2 is involved in ADT-initiated NEtD may assist in developing treatment strategies that can prevent or reverse t-NEPC emergence, thereby prolonging therapeutic responses. Here we found that in primary, treatment-naïve prostate cancers, ADRB2 mRNA was positively correlated with expression of luminal differentiation markers, and ADRB2 protein levels were inversely correlated with Gleason grade. ADRB2 mRNA was upregulated in metastatic prostate cancer, and progressively downregulated during ADT and t-NEPC emergence. In androgen-deprivated medium, high ADRB2 was required for LNCaP cells to undergo NEtD, measured as increased neurite outgrowth and expression of neuron differentiation and neuroendocrine genes. ADRB2 overexpression induced a neuroendocrine-like morphology in both androgen receptor (AR)-positive and -negative prostate cancer cell lines. ADRB2 downregulation in LNCaP cells increased canonical Wnt signaling, and GSK3α/β inhibition reduced the expression of neuron differentiation and neuroendocrine genes. In LNCaP xenografts, more pronounced castration-induced NEtD was observed in tumors derived from high than low ADRB2 cells. In conclusion, high ADRB2 expression is required for ADT-induced NEtD, characterized by ADRB2 downregulation and t-NEPC emergence. IMPLICATIONS: This data suggest a potential application of β-blockers to prevent cancer cells committed to a neuroendocrine lineage from evolving into t-NEPC
    corecore