3,519 research outputs found

    Improving competitive ability of chickpea with sowthistle

    Get PDF
    An experiment was conducted to examine the extent of root and canopy interference of chickpea (Cicer arietinum L.) with sowthistle (Sonchus oleraceus L.). Sowthistle was surrounded with either two or eight chickpea plants. There were different types of competition: no competition, shoot competition, root competition and full competition (root and shoot). The performance of sowthistle grown in full competition with two chickpea plants was the same as that grown with root competition only. Also, there were no significant differences between sowthistle grown with chickpea canopy shade and the control, where there was no competition. On the other hand sowthistle grown with eight neighbours was significantly suppressed in full, canopy or root competition

    The Power of Non-Determinism in Higher-Order Implicit Complexity

    Full text link
    We investigate the power of non-determinism in purely functional programming languages with higher-order types. Specifically, we consider cons-free programs of varying data orders, equipped with explicit non-deterministic choice. Cons-freeness roughly means that data constructors cannot occur in function bodies and all manipulation of storage space thus has to happen indirectly using the call stack. While cons-free programs have previously been used by several authors to characterise complexity classes, the work on non-deterministic programs has almost exclusively considered programs of data order 0. Previous work has shown that adding explicit non-determinism to cons-free programs taking data of order 0 does not increase expressivity; we prove that this - dramatically - is not the case for higher data orders: adding non-determinism to programs with data order at least 1 allows for a characterisation of the entire class of elementary-time decidable sets. Finally we show how, even with non-deterministic choice, the original hierarchy of characterisations is restored by imposing different restrictions.Comment: pre-edition version of a paper accepted for publication at ESOP'1

    On the regularization of impact without collision: the Painlevé paradox and compliance

    Get PDF
    We consider the problem of a rigid body, subject to a unilateral constraint, in the presence of Coulomb friction. We regularize the problem by assuming compliance (with both stiffness and damping) at the point of contact, for a general class of normal reaction forces. Using a rigorous mathematical approach, we recover impact without collision (IWC) in both the inconsistent and indeterminate Painlev\'e paradoxes, in the latter case giving an exact formula for conditions that separate IWC and lift-off. We solve the problem for arbitrary values of the compliance damping and give explicit asymptotic expressions in the limiting cases of small and large damping, all for a large class of rigid bodies.Comment: Compared to previous version of the paper, we have: (a) Added a new theorem 2, (b) added a new discussion section with numerical computations, and (c) changed the overall exposition of the manuscrip

    Right Ventricular Pacing and Sensing Function in High Posterior Septal and Apical Lead Placement in Cardiac Resynchronization Therapy

    Get PDF
    AbstractBackgroundThe conventional right ventricular (RV) lead position in cardiac resynchronization therapy pacemakers (CRT-P) is the RV apex (RV-A). Little is known about electrophysiological stability and associated complications of pacing leads in RV high posterior septal (RV-HS) position in CRT-P.MethodsTwo hundred and thirty-five consecutive CRT-P patients were included from 1999-2010. Pacing thresholds at 0.5ms and 2.5V, sensing electrograms and lead impedances were measured at implant and repeated 1,3,6,12,18 and 24months after CRT-P. Electrophysiological measurements of leads located in RV-A and RV-HS were analyzed retrospectively. Bipolar RV leads were used, including high impedance leads, passive fixation and active fixation.ResultsRV pacing leads were implanted in RV-A (n=79) and RV-HS (n=156). Average RV pacing thresholds from CRT implant procedure to 24-month follow-up at 0.5ms were 0.77±0.69V in RV-A and 0.71±0.35V in RV-HS (P=0.31), and at 2.5V were 0.06±0.08ms in RV-A and 0.07±0.05ms in RV-HS (P=0.12). Average RV electrogram amplitudes from baseline to 24months after CRT were 15.3±6.9mV in RV-A and 12.1±6.0mV in RV-HS (P=0.55). Average RV impedances during follow-up were 850±286Ω in RV-A and 618±147Ω in RV-HS (P=0.57). Similar RV lead revisions between RV-A and RV-HS were observed after 2-year follow-up (P=0.55).ConclusionsThe RV-HS lead position demonstrated stable and acceptable long-term pacing and sensing function, with rates of complications comparable to conventional RV-A lead position in CRT. The RV-HS lead position is feasible in CRT-P

    On the use of blow up to study regularizations of singularities of piecewise smooth dynamical systems in R3\mathbb{R}^3

    Get PDF
    In this paper we use the blow up method of Dumortier and Roussarie \cite{dumortier_1991,dumortier_1993,dumortier_1996}, in the formulation due to Krupa and Szmolyan \cite{krupa_extending_2001}, to study the regularization of singularities of piecewise smooth dynamical systems \cite{filippov1988differential} in R3\mathbb R^3. Using the regularization method of Sotomayor and Teixeira \cite{Sotomayor96}, first we demonstrate the power of our approach by considering the case of a fold line. We quickly recover a main result of Bonet and Seara \cite{reves_regularization_2014} in a simple manner. Then, for the two-fold singularity, we show that the regularized system only fully retains the features of the singular canards in the piecewise smooth system in the cases when the sliding region does not include a full sector of singular canards. In particular, we show that every locally unique primary singular canard persists the regularizing perturbation. For the case of a sector of primary singular canards, we show that the regularized system contains a canard, provided a certain non-resonance condition holds. Finally, we provide numerical evidence for the existence of secondary canards near resonance.Comment: To appear in SIAM Journal of Applied Dynamical System
    corecore