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1 Piecewise Smooth Systems

X = (X+, X−) with vector-fields (X±,±) is a piece-
wise smooth (PWS) system.  = + ∩ − :

ƒ (, y, z) = 0 is the switching manifold. Locally
we take ƒ (, y, z) = y.  is divided into sliding:
s, crossing: cr and tangencies: T, see Fig.
(a). On s we adopt the Filippov convention [2]
of sliding (see Fig. (b)) to obtain a vector-field
(Xs,s).

(a) Visible fold (b) Filippov convention

(c) Invisible fold

2 Singularities

p ∈  is a tangency of X± with  if X±ƒ (p) = 0. A
tangency is a fold if X±ƒ (X±ƒ )(p) 6= 0, being vis-
ible when > 0 (see Fig. (a)), invisible when < 0

(see Fig. (c)). Here X±ƒ = X± ·∇ƒ = X±2 is the Lie-
derivative. A two-fold p ∈  is a fold from above
and below: X+ƒ (p) = X−ƒ (p) = 0.

3 Two-Folds in R
3

Proposition. [3] Generically, a two-fold p in R
3

is the transverse intersection of two lines − :

 = y = 0, z ∈ [−c−1, c−1], + : y = z = 0,  ∈
[−c−1, c−1] consisting of fold points of X∓, re-
spectively.
The lines ± divide  : y = 0 into four separate
regions:
• Stable sliding −

s
:  ≤ 0, z ≤ 0.

• Unstable sliding +
s
:  ≥ 0, z ≥ 0.

• Crossing downwards −
cr
:  ≥ 0, z ≤ 0.

• Crossing upwards +
cr
:  ≤ 0, z ≥ 0.

See Fig. (d)-(f). A two-fold is:
• Visible if ± are both visible (Fig. (d)).
• Visible-invisible if + visible, − invisible (Fig.

(e)).
• Invisible if ± are both invisible (Fig. (f)).
Definition. A singular canard of a PWS is a tra-
jectory of (±

s
, X±

s
) having a continuation through

the two-fold singularity p.

The two-fold p is an equilibrium of the vector-
field F∓X

∓
s, defined in 

−
s ∪ {p} ∪ 

−
s, and with

F∓ = H(, z) a scalar smooth function which is
positive (negative) for , z < 0 (, z > 0). Then:
Proposition. [3] Non-degenerate singular canards
exists if and only if p corresponds to a node or
a saddle of F−

s
, and an eigenspace is contained

within s ∪ {p}.
See Fig. (g).

(d) Visible two-fold (e) Invisible two-fold

(f) Visible-invisible
two-fold

(g) Singular canards for
visible-invisible case

(h) Regularization func-
tion ϕ

(i) Regularized system
Xε

(j) Critical manifolds
S,r and p̃

(k) Singular cycle 0

4 Regularization

• What happens to the two-fold/singular canards
when we regularize the PWS system?

• Can we learn something about the PWS system
by regularizing?

We consider the Sotomayor-Teixeira regulariza-
tion [5]:

Xε =
1

2
X+(1+ ϕ(ε−1y)) +

1

2
X−(1− ϕ(ε−1y)),

with ε≪ 1 (see Fig. (h) and (i)). Writing y = εŷ

we obtain a hidden slow-fast system with (, z)
slow and ŷ fast.

Theorem. [3] X0 has critical manifolds: S =

−s (attracting), Sr = +s (repelling) and a non-
hyperbolic line p̃ :  = z = 0, ŷ ∈ (−1,1) (see Fig.
(j)). On S,r: Reduced system = Filippov sliding
system.
Note that in terms of y = εŷ we have p̃ = p.

5 Blowup

To study the persistence of canards we blowup
the nonhyperbolic line p̃:  = r̄, z = rz̄, ε =

r2ε̄, (̄, z̄, ε̄) ∈ S2 following the formulation of
Krupa and Szmolyan [4]. We study the phase
space using directional charts κ1 : ̄ = −1, κ3 :

̄ = 1 and a rescaling chart: κ2 : ε̄ = 1. We ob-
tain:
Theorem. [3] Singular canards ⇒ (Primary, max-
imal) Canards as transverse intersections of con-
tinuations of Fenichel slow manifolds S,ε and Sr,ε

provided a certain non-resonance condition holds
true. These maximal canards are O(

p
ε)-close to

the singular canards.
Result and approach very similar to [6, 7] for folds
in slow-fast systems in R

3. But the geometry is
very different.

6 Visible-Invisible Two-Fold

The two-fold is associated with forward and back-
wards non-uniqueness. By regularizing we can
pick the “right orbits”.
Theorem. Consider the visible-invisible case and
suppose as in Fig. (k) that there exists a singular
cycle 0 (satisfying certain non-degeneracy con-
ditions, see also [1]). Then for ε ≪ 1 sufficiently
small Xε possesses an attracting limit cycle ε

satisfying ε = 0 + O(
p
ε).

PWS orbit 0 is therefore distinguished, as 0 =

limε→0 ε, among all the orbits through p. Note
that these results hold true for all monotone reg-
ularization functions.
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