4 research outputs found

    DNA and IκBα Both Induce Long-Range Conformational Changes in NFκB

    No full text
    We recently discovered that IκBα enhances the rate of release of nuclear factor kappa B (NFκB) from DNA target sites in a process we have termed molecular stripping. Coarse-grained molecular dynamics simulations of the stripping pathway revealed two mechanisms for the enhanced release rate: the negatively charged PEST region of IκBα electrostatically repels the DNA, and the binding of IκBα appears to twist the NFκB heterodimer so that the DNA can no longer bind. Here, we report amide hydrogen/deuterium exchange data that reveal long-range allosteric changes in the NFκB (RelA-p50) heterodimer induced by DNA or IκBα binding. The data suggest that the two Ig-like subdomains of each Rel-homology region, which are connected by a flexible linker in the heterodimer, communicate in such a way that when DNA binds to the N-terminal DNA-binding domains, the nuclear localization signal becomes more highly exchanging. Conversely, when IκBα binds to the dimerization domains, amide exchange throughout the DNA-binding domains is decreased as if the entire domain is becoming globally stabilized. The results help understand how the subtle mechanism of molecular stripping actually occurs

    RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation

    No full text
    The bromodomain and extra-terminal motif (BET) protein BRD4 binds to acetylated histones at enhancers and promoters via its bromodomains (BDs) to regulate transcriptional elongation. In human colorectal cancer cells, we found that BRD4 was recruited to enhancers that were co-occupied by mutant p53 and supported the synthesis of enhancer-directed transcripts (eRNAs) in response to chronic immune signaling. BRD4 selectively associated with eRNAs that were produced from BRD4-bound enhancers. Using biochemical and biophysical methods, we found that BRD4 BDs function cooperatively as docking sites for eRNAs and that the BDs of BRD2, BRD3, BRDT, BRG1, and BRD7 directly interact with eRNAs. BRD4-eRNA interactions increased BRD4 binding to acetylated histones in vitro and augmented BRD4 enhancer recruitment and transcriptional cofactor activities. Our results suggest a mechanism by which eRNAs are directly involved in gene regulation by modulating enhancer interactions and transcriptional functions of BRD4
    corecore