15 research outputs found

    Selective Behavioral Alterations In The HIV-1 Transgenic Rat: Implications For Diagnosis Of Pediatric HIV-1

    Get PDF
    Since the advent of combination antiretroviral therapy (cART), pediatric HIV-1 (PHIV) has evolved from a fatal disease to a chronic disease with children perinatally infected with HIV-1 surviving into adulthood. The HIV-1 transgenic (Tg) rat, which expresses 7 of the 9 HIV-1 genes constitutively throughout development, was used to investigate the early development of chronic neurological impairment in PHIV. Male and female Fischer HIV-1 Tg and F344N control rats, sampled from 35 litters, were repeatedly assessed during early development using multiple experimental paradigms, including somatic growth, locomotor activity, cross-modal prepulse inhibition (PPI) and gap-prepulse inhibition (gap-PPI). A rightward shift towards later eye opening was observed in HIV-1 Tg animals in comparison to controls. HIV-1 Tg animals exhibited delays in the development of the cholinergic inhibitory system, assessed using locomotor activity. Alterations in the development of the interstimulus interval (ISI) function were observed in HIV-1 Tg rats in comparison to control animals, assessed using PPI. Presence of the HIV-1 transgene was diagnosed with 91.4% accuracy using multiple behavioral assessments on PD 20 and 21. Selective early behavioral alterations observed in the HIV-1 Tg rats provide an opportunity for the development of a clinical diagnostic screening tool, which may improve the long-term outcome for children perinatally infected with HIV-1

    Neurodevelopmental Processes in the Prefrontal Cortex Derailed by Chronic HIV-1 Viral Protein Exposure

    Get PDF
    Due to the widespread access to, and implementation of, combination antiretroviral therapy, individuals perinatally infected with human immunodeficiency virus type 1 (HIV-1) are living into adolescence and adulthood. Perinatally infected adolescents living with HIV-1 (pALHIV) are plagued by progressive, chronic neurocognitive impairments; the pathophysiological mechanisms underlying these deficits, however, remain understudied. A longitudinal experimental design from postnatal day (PD) 30 to PD 180 was utilized to establish the development of pyramidal neurons, and associated dendritic spines, from layers II-III of the medial prefrontal cortex (mPFC) in HIV-1 transgenic (Tg) and control animals. Three putative neuroinflammatory markers (i.e., IL-1β, IL-6, and TNF-α) were evaluated early in development (i.e., PD 30) as a potential mechanism underlying synaptic dysfunction in the mPFC. Constitutive expression of HIV-1 viral proteins induced prominent neurodevelopmental alterations and progressive synaptodendritic dysfunction, independent of biological sex, in pyramidal neurons from layers II-III of the mPFC. From a neurodevelopmental perspective, HIV-1 Tg rats exhibited prominent deficits in dendritic and synaptic pruning. With regards to progressive synaptodendritic dysfunction, HIV-1 Tg animals exhibited an age-related population shift towards dendritic spines with decreased volume, increased backbone length, and decreased head diameter; parameters associated with a more immature dendritic spine phenotype. There was no compelling evidence for neuroinflammation in the mPFC during early development. Collectively, progressive neuronal and dendritic spine dysmorphology herald synaptodendritic dysfunction as a key neural mechanism underlying chronic neurocognitive impairments in pALHIV

    Synaptic Connectivity in Medium Spiny Neurons of the Nucleus Accumbens: A Sex-Dependent Mechanism Underlying Apathy in the HIV-1 Transgenic Rat

    Get PDF
    Frontal-subcortical circuit dysfunction is commonly associated with apathy, a neuropsychiatric sequelae of human immunodeficiency virus type-1 (HIV-1). Behavioral and neurochemical indices of apathy in the nucleus accumbens (NAc), a key brain region involved in frontal-subcortical circuitry, are influenced by the factor of biological sex. Despite evidence of sex differences in HIV-1, the effect of biological sex on medium spiny neurons (MSNs), which are central integrators of frontal-subcortical input, has not been systematically evaluated. In the present study, a DiOlistic labeling technique was used to investigate the role of long-term HIV-1 viral protein exposure, the factor of biological sex, and their possible interaction, on synaptic dysfunction in MSNs of the NAc in the HIV-1 transgenic (Tg) rat. HIV-1 Tg rats, independent of biological sex, displayed profound alterations in synaptic connectivity, evidenced by a prominent shift in the distribution of dendritic spines. Female HIV-1 Tg rats, but not male HIV-1 Tg rats, exhibited alterations in dendritic branching and neuronal arbor complexity relative to control animals, supporting an alteration in glutamate neurotransmission. Morphologically, HIV-1 Tg male, but not female HIV-1 Tg rats, displayed a population shift towards decreased dendritic spine volume, suggesting decreased synaptic area, relative to control animals. Synaptic dysfunction accurately identified presence of the HIV-1 transgene, dependent upon biological sex, with at least 80% accuracy (i.e., Male: 80%; Female: 90%). Collectively, these results support a primary alteration in circuit connectivity, the mechanism of which is dependent upon biological sex. Understanding the effect of biological sex on the underlying neural mechanism for HIV-1 associated apathy is vital for the development of sex-based therapeutics and cure strategies

    Intraneuronal β-amyloid Accumulation: Aging HIV-1 Human and HIV-1 Transgenic Rat Brain

    Get PDF
    The prevalence of HIV-1 associated neurocognitive disorders (HAND) is significantly greater in older, relative to younger, HIV-1 seropositive individuals; the neural pathogenesis of HAND in older HIV-1 seropositive individuals, however, remains elusive. To address this knowledge gap, abnormal protein aggregates (i.e., β-amyloid) were investigated in the brains of aging (\u3e12 months of age) HIV-1 transgenic (Tg) rats. In aging HIV-1 Tg rats, double immunohistochemistry staining revealed abnormal intraneuronal β-amyloid accumulation in the prefrontal cortex (PFC) and hippocampus, relative to F344/N control rats. Notably, in HIV-1 Tg animals, increased β-amyloid accumulation occurred in the absence of any genotypic changes in amyloid precursor protein (APP). Furthermore, no clear amyloid plaque deposition was observed in HIV-1 Tg animals. Critically, β-amyloid was co-localized with neurons in the cortex and hippocampus, supporting a potential mechanism underlying synaptic dysfunction in the HIV-1 Tg rat. Consistent with these neuropathological findings, HIV-1 Tg rats exhibited prominent alterations in the progression of temporal processing relative to control animals; temporal processing relies, at least in part, on the integrity of the PFC and hippocampus. In addition, in post-mortem HIV-1 seropositive individuals with HAND, intraneuronal β-amyloid accumulation was observed in the dorsolateral PFC and hippocampal dentate gyrus. Consistent with observations in the HIV-1 Tg rat, no amyloid plaques were found in these post-mortem HIV-1 seropositive individuals with HAND. Collectively, intraneuronal β-amyloid aggregation observed in the PFC and hippocampus of HIV-1 Tg rats supports a potential factor underlying HIV-1 associated synaptodendritic damage. Further, the HIV-1 Tg rat provides a biological system to model HAND in older HIV-1 seropositive individuals

    Intraneuronal β-Amyloid Accumulation: Aging HIV-1 Human and HIV-1 Transgenic Rat Brain

    Get PDF
    The prevalence of HIV-1 associated neurocognitive disorders (HAND) is significantly greater in older, relative to younger, HIV-1 seropositive individuals; the neural pathogenesis of HAND in older HIV-1 seropositive individuals, however, remains elusive. To address this knowledge gap, abnormal protein aggregates (i.e., β-amyloid) were investigated in the brains of aging (\u3e12 months of age) HIV-1 transgenic (Tg) rats. In aging HIV-1 Tg rats, double immunohistochemistry staining revealed abnormal intraneuronal β-amyloid accumulation in the prefrontal cortex (PFC) and hippocampus, relative to F344/N control rats. Notably, in HIV-1 Tg animals, increased β-amyloid accumulation occurred in the absence of any genotypic changes in amyloid precursor protein (APP). Furthermore, no clear amyloid plaque deposition was observed in HIV-1 Tg animals. Critically, β-amyloid was co-localized with neurons in the cortex and hippocampus, supporting a potential mechanism underlying synaptic dysfunction in the HIV-1 Tg rat. Consistent with these neuropathological findings, HIV-1 Tg rats exhibited prominent alterations in the progression of temporal processing relative to control animals; temporal processing relies, at least in part, on the integrity of the PFC and hippocampus. In addition, in post-mortem HIV-1 seropositive individuals with HAND, intraneuronal β-amyloid accumulation was observed in the dorsolateral PFC and hippocampal dentate gyrus. Consistent with observations in the HIV-1 Tg rat, no amyloid plaques were found in these post-mortem HIV-1 seropositive individuals with HAND. Collectively, intraneuronal β-amyloid aggregation observed in the PFC and hippocampus of HIV-1 Tg rats supports a potential factor underlying HIV-1 associated synaptodendritic damage. Further, the HIV-1 Tg rat provides a biological system to model HAND in older HIV-1 seropositive individuals

    S-Equol Mitigates Motivational Deficits and Dysregulation Associated With HIV-1

    Get PDF
    Motivational deficits (e.g., apathy) and dysregulation (e.g., addiction) in HIV-1 seropositive individuals, despite treatment with combination antiretroviral therapy, necessitates the development of innovative adjunctive therapeutics. S-Equol (SE), a selective estrogen receptor beta agonist, has been implicated as a neuroprotective and/or neurorestorative therapeutic for HIV-1 associated neurocognitive disorders (HAND); its therapeutic utility for motivational alterations, however, has yet to be systematically evaluated. Thus, HIV-1 transgenic (Tg) and control animals were treated with either a daily oral dose of SE (0.2 mg) or vehicle and assessed in a series of tasks to evaluate goal-directed and drug-seeking behavior. First, at the genotypic level, motivational deficits in HIV-1 Tg rats treated with vehicle were characterized by a diminished reinforcing efficacy of, and sensitivity to, sucrose. Motivational dysregulation was evidenced by enhanced drug-seeking for cocaine relative to control animals treated with vehicle. Second, treatment with SE ameliorated both motivational deficits and dysregulation in HIV-1 Tg rats. Following a history of cocaine self-administration, HIV-1 Tg animals treated with vehicle exhibited lower levels of dendritic branching and a shift towards longer dendritic spines with decreased head diameter. Treatment with SE, however, led to long-term enhancements in dendritic spine morphology in HIV-1 Tg animals supporting a potential underlying basis by which SE exerts its therapeutic effects. Taken together, SE restored motivated behavior in the HIV-1 Tg rat, expanding the potential clinical utility of SE to include both neurocognitive and affective alterations

    Neurodevelopmental Processes in the Prefrontal Cortex Derailed by Chronic HIV-1 Viral Protein Exposure

    No full text
    Due to the widespread access to, and implementation of, combination antiretroviral therapy, individuals perinatally infected with human immunodeficiency virus type 1 (HIV-1) are living into adolescence and adulthood. Perinatally infected adolescents living with HIV-1 (pALHIV) are plagued by progressive, chronic neurocognitive impairments; the pathophysiological mechanisms underlying these deficits, however, remain understudied. A longitudinal experimental design from postnatal day (PD) 30 to PD 180 was utilized to establish the development of pyramidal neurons, and associated dendritic spines, from layers II-III of the medial prefrontal cortex (mPFC) in HIV-1 transgenic (Tg) and control animals. Three putative neuroinflammatory markers (i.e., IL-1β, IL-6, and TNF-α) were evaluated early in development (i.e., PD 30) as a potential mechanism underlying synaptic dysfunction in the mPFC. Constitutive expression of HIV-1 viral proteins induced prominent neurodevelopmental alterations and progressive synaptodendritic dysfunction, independent of biological sex, in pyramidal neurons from layers II-III of the mPFC. From a neurodevelopmental perspective, HIV-1 Tg rats exhibited prominent deficits in dendritic and synaptic pruning. With regards to progressive synaptodendritic dysfunction, HIV-1 Tg animals exhibited an age-related population shift towards dendritic spines with decreased volume, increased backbone length, and decreased head diameter; parameters associated with a more immature dendritic spine phenotype. There was no compelling evidence for neuroinflammation in the mPFC during early development. Collectively, progressive neuronal and dendritic spine dysmorphology herald synaptodendritic dysfunction as a key neural mechanism underlying chronic neurocognitive impairments in pALHIV

    Sex Matters: Robust Sex Differences in Signal Detection in the HIV-1 Transgenic Rat

    No full text
    Sex differences in human immunodeficiency virus type-1 (HIV-1) have been repeatedly suggested. Females, who account for 51% of HIV-1 seropositive individuals, are inadequately represented in clinical and preclinical studies, as well as in the description of HIV-1 associated neurocognitive disorders (HAND). Direct comparisons of neurocognitive decline in women and men must be made to address this underrepresentation. The effect of biological sex (i.e., the biological factors, including chromosomes and hormones, determining male or female characteristics; WHO, 2017) on sustained attention, which is commonly impaired in HIV-1 seropositive individuals, was investigated in intact HIV-1 transgenic (Tg) and control animals using a signal detection operant task. Analyses revealed a robust sex difference in the rate of task acquisition, collapsed across genotype, with female animals meeting criteria in shaping (at least 60 reinforcers for three consecutive or five non-consecutive sessions) and signal detection (70% accuracy for five consecutive or seven non-consecutive sessions) significantly more slowly than male animals. Presence of the HIV-1 transgene also had a significant effect on shaping and signal detection acquisition, with HIV-1 Tg animals displaying significant deficits in the rate of acquisition relative to control animals–deficits that were more prominent in female HIV-1 Tg animals. Once the animals’ reached asymptotic performance in the signal detection task, female animals achieved a lower percent accuracy across test sessions and exhibited a decreased response rate relative to male animals, although there was no compelling evidence for any effect of transgene. Results indicate that the factor of biological sex may be a moderator of the influence of the HIV-1 transgene on signal detection. Understanding the impact of biological sex on neurocognitive deficits in HIV-1 is crucial for the development of sex-based therapeutics and cure strategies
    corecore