38 research outputs found

    A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-α therapy

    Get PDF
    BACKGROUND: Survivin is a member of the inhibitor-of-apoptosis (IAP) family which is widely expressed by many different cancers. Overexpression of survivin is associated with drug resistance in cancer cells, and reduced patient survival after chemotherapy and radiotherapy. Agents that antagonize the function of survivin hold promise for treating many forms of cancer. The purpose of this study was to investigate whether a cell-permeable dominant-negative survivin protein would demonstrate bioactivity against prostate and cervical cancer cells grown in three dimensional culture.RESULTS: A dominant-negative survivin (C84A) protein fused to the cell penetrating peptide poly-arginine (R9) was expressed in E. coli and purified by affinity chromatography. Western blot analysis revealed that dNSurR9-C84A penetrated into 3D-cultured HeLa and DU145 cancer cells, and a cell viability assay revealed it induced cancer cell death. It increased the activities of caspase-9 and caspase-3, and rendered DU145 cells sensitive to TNF-&alpha; via by a mechanism involving activation of caspase-8.CONCLUSIONS: The results demonstrate that antagonism of survivin function triggers the apoptosis of prostate and cervical cancer cells grown in 3D culture. It renders cancer cells sensitive to the proapoptotic affects of TNF-&alpha;, suggesting that survivin blocks the extrinsic pathway of apoptosis. Combination of the biologically active dNSurR9-C84A protein or other survivin antagonists with TNF-&alpha; therapy warrants consideration as an approach to cancer therapy.<br /

    Simultaneous neuroprotection and blockade of inflammation reverses autoimmune encephalomyelitis

    Full text link
    In multiple sclerosis, the immune system attacks the white matter of the brain and spinal cord, leading to disability and/or paralysis. Myelin, oligodendrocytes and neurons are lost due to the release by immune cells of cytotoxic cytokines, autoantibodies and toxic amounts of the excitatory neurotransmitter glutamate. Experimental autoimmune encephalomyelitis (EAE) is an animal model that exhibits the clinical and pathological features of multiple sclerosis. Current therapies that suppress either the inflammation or glutamate excitotoxicity are partially effective when administered at an early stage of EAE, but cannot block advanced disease. In a multi-faceted approach to combat EAE, we blocked inflammation with an anti-MAdCAM-1 (mucosal addressin cell adhesion molecule-1) monoclonal antibody and simultaneously protected oligodendrocytes and neurons against glutamate-mediated damage with the -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate antagonist 2,3-dihydroxy-6-nitro-7- sulfamoylbenzo(f)quinoxaline (NBQX) and the neuroprotector glycine&ndash;proline&ndash;glutamic acid (GPE; N-terminal tripeptide of insulin-like growth factor). Remarkably, administration at an advanced stage of unremitting EAE of either a combination of NBQX and GPE, or preferably all three latter reagents, resulted in amelioration of disease and repair of the CNS, as assessed by increased oligodendrocyte survival and remyelination, and corresponding decreased paralysis, inflammation, CNS apoptosis and axonal damage. Each treatment reduced the expression of nitric oxide and a large panel of proinflammatory and immunoregulatory cytokines, in particular IL-6 which plays a critical role in mediating EAE. Mice displayed discernible improvements in all physical features examined. Disease was suppressed for 5 weeks, but relapsed when treatment was suspended, suggesting treatment must be maintained to be effective. The above approaches, which allow CNS repair by inhibiting inflammation and/or simultaneously protect neurons and oligodendrocytes from damage, could thus be effective therapies for multiple sclerosis.<br /

    Mucosal vascular addressin cell adhesion molecule-1 is expressed outside the endothelial lineage on fibroblasts and melanoma cells

    Full text link
    Mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) is predominantly expressed on high endothelial venules in inflamed tissues where it assists with leucocyte extravasation. Here we report that MAdCAM-1 has the potential to be more widely expressed outside the endothelial cell lineage than previously appreciated. Thus, MAdCAM-1 RNA transcripts and cell-surface protein were expressed by NIH 3T3 fibroblasts following activation with tumour necrosis factor-alpha (TNF-alpha), and by freshly isolated and cultured primary mouse splenic and tail fibroblasts in the absence of TNF-alpha stimulation. They were constitutively expressed by B16F10 melanoma cells, and expression was enhanced by cell activation with TNF-alpha. Mucosal vascular addressin cell adhesion molecule-1 was expressed on the apical surface of isolated cells, but became predominantly localized to cell junctions in confluent cell monolayers, suggesting it may play a role in the homotypic aggregation of cells. Tumour necrosis factor-alpha enhanced the expression of a firefly luciferase reporter directed by the MAdCAM-1 promoter in NIH 3T3 and B16F10 cells. A DNA fragment extending from nt -1727 to -673 was sufficient to confer cell-type selective expression. Mucosal vascular addressin cell adhesion molecule-1 expressed by NIH 3T3 cells was biologically active, as it supported the adhesion of TK-1 T cells in an alpha4beta7-dependent fashion. The expression of MAdCAM-1 by fibroblasts, and melanomas suggests MAdCAM-1 may play a role in regulating host responses in the periphery, leucocyte transmigration across nonendothelial boundaries, or the homotypic interactions of some malignant melanomas.<br /

    Prevention of a chronic progressive form of experimental autoimmune encephalomyelitis by an antibody against mucosal addressin cell adhesion molecule-1, given early in the course of disease progression.

    Full text link
    A role for &alpha;4 and &beta;7 integrins in mediating leucocyte entry into the central nervous system in the multiple sclerosis (MS)-like disease experimental autoimmune encephalomyelitis (EAE) has been demonstrated. However, the individual contributions of their respective ligands mucosal addressin cell adhesion molecule-1 (MAdCAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-cadherin expressed on the blood-brain barrier has not been determined. In the present paper, it is shown that an antibody directed against MAdCAM-1, the preferential ligand for &alpha;4&beta;7, effectively prevented the development of a progressive, non-remitting, form of EAE, actively induced by injection of myelin oligodendrocyte glycoprotein peptide (MOG(35-55)) autoantigen. Combinational treatment with both anti-MAdCAM-1, VCAM-1, and intercellular adhesion molecule-1 (ICAM-1) (ligand for integrin lymphocyte function-associated antigen (LFA)-1) mAbs led to more rapid remission than that obtained with anti-MAdCAM-1 antibody alone. However, neither MAdCAM-1 monotherapy, nor combinational antibody blockade was preventative when administered late in the course of disease progression. In conclusion, MAdCAM-1 plays a major contributory role in the progression of chronic EAE and is a potential therapeutic target for the treatment of MS. Critically, antivascular addressin therapy must be given eaA role for alpha4 and beta7 integrins in mediating leucocyte entry into the central nervous system in the multiple sclerosis (MS)-like disease experimental autoimmune encephalomyelitis (EAE) has been demonstrated. However, the individual contributions of their respective ligands mucosal addressin cell adhesion molecule-1 (MAdCAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-cadherin expressed on the blood-brain barrier has not been determined. In the present paper, it is shown that an antibody directed against MAdCAM-1, the preferential ligand for alpha4beta7, effectively prevented the development of a progressive, non-remitting, form of EAE, actively induced by injection of myelin oligodendrocyte glycoprotein peptide (MOG(35-55)) autoantigen. Combinational treatment with both anti-MAdCAM-1, VCAM-1, and intercellular adhesion molecule-1 (ICAM-1) (ligand for integrin lymphocyte function-associated antigen (LFA)-1) mAbs led to more rapid remission than that obtained with anti-MAdCAM-1 antibody alone. However, neither MAdCAM-1 monotherapy, nor combinational antibody blockade was preventative when administered late in the course of disease progression. In conclusion, MAdCAM-1 plays a major contributory role in the progression of chronic EAE and is a potential therapeutic target for the treatment of MS. Critically, antivascular addressin therapy must be given early in the course of disease prior to the establishment of irreversible damage if it is to be effective, as a single treatment modality.<br /

    Vascular attack by 5,6-dimethylxanthenone-4-acetic acid combined with B7.1 (CD80)-mediated immunotherapy overcomes immune resistance and leads to the eradication of large tumors and multiple tumor foci

    Full text link
    The promise of cancer immunotherapy is that it will not only eradicate primary tumors but will generate systemic antitumor immunity capable of destroying distant metastases. A major problem that must first be surmounted relates to the immune resistance of large tumors. Here we reveal that immune resistance can be overcome by combining immunotherapy with a concerted attack on the tumor vasculature. The functionally related antitumor drugs 5,6-dimethylxanthenone-4-acetic acid (DMXAA) and flavone acetic acid (FAA), which cause tumor vasculature collapse and tumor necrosis, were used to attack the tumor vasculature, whereas the T-cell costimulator B7.1 (CD80), which costimulates T-cell proliferation via the CD28 pathway, was used to stimulate antitumor immunity. The injection of cDNA (60&ndash;180 &micro;g) encoding B7.1 into large EL-4 tumors (0.8 cm in diameter) established in C57BL/6 mice, followed 24 h later by i.p. administration of either DMXAA (25 mg/kg) or FAA (300 mg/kg), resulted in complete tumor eradication within 2&ndash;6 weeks. In contrast, monotherapies were ineffective. Both vascular attack and B7.1 immunotherapy led to up-regulation of heat shock protein 70 on stressed and dying tumor cells, potentially augmenting immunotherapy. Remarkably, large tumors took on the appearance of a wound that rapidly ameliorated, leaving perfectly healed skin. Combined therapy was mediated by CD8+ T cells and natural killer cells, accompanied by heightened and prolonged antitumor cytolytic activity (P &lt; 0.001), and by a marked increase in tumor cell apoptosis. Cured animals completely rejected a challenge of 1 x 107 parental EL-4 tumor cells but not a challenge of 1 x 104 Lewis lung carcinoma cells, demonstrating that antitumor immunity was tumor specific. Adoptive transfer of 2 x 108 splenocytes from treated mice into recipients bearing established (0.8 cm in diameter) tumors resulted in rapid and complete tumor rejection within 3 weeks. Although DMXAA and B7.1 monotherapies are complicated by a narrow range of effective doses, combined therapy was less dosage dependent. Thus, a broad range of amounts of B7.1 cDNA were effective in combination with 25 mg/kg DMXAA. In contrast, DMXAA, which has a very narrow range of high active doses, was effective at a low dose (18 mg/kg) when administered with a large amount (180 &micro;g) of B7.1 cDNA. Importantly, combinational therapy generated heightened antitumor immunity, such that gene transfer of B7.1 into one tumor, followed by systemic DMXAA treatment, led to the complete rejection of multiple untreated tumor nodules established in the opposing flank. These findings have important implications for the future direction and utility of cancer immunotherapies aimed at harnessing patients&rsquo; immune responses to their own tumors.<br /

    Temporal expression of heat shock proteins 60 and 70 at lesion-prone sites during atherogenesis in ApoE-deficient mice

    Full text link
    In the study, we investigate whether the expressions of heat shock protein (hsp)60 (a potential autoantigen) and the stress-inducible form of cytoprotector hsp70 are correlated with the development of atherosclerotic lesions in the aortic tree of apolipoprotein E&ndash;deficient (apoE-/-) mice. The apoE-/- mouse model is advantageous because the stress-inducible form of hsp70 is not constitutively expressed in mice, unlike primates; hence, tissues under stress can be clearly defined. Both mammalian hsps were detected newly expressed (before mononuclear cell infiltration) on aortic valves and endothelia at lesion-prone sites of 3-week-old apoE-/- mice. In 8- and 20-week-old mice, they were strongly and heterogeneously expressed in early to advanced fibrofatty plaques, with levels correlating with lesion severity. Expression was markedly downregulated in advanced collagenous, acellular, calcified plaques of 40- and 69-week-old mice and was absent in control aortas of normocholesterolemic wild-type (apoE+/+) mice. Western blot analysis of tissue homogenates confirmed the temporal expression of the hsps. Double immunostaining revealed that both hsps were expressed by lesional endothelial cells, macrophages, smooth muscle cells, and CD3+ T lymphocytes. This study provides evidence that hsp60 and hsp70 are temporally expressed on all major cell types in lesion-prone sites during atherogenesis, suggesting that few cells escape the toxic environment of the atherosclerotic plaque.<br /

    mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446

    No full text
    <div><p>Messenger RNA (mRNA) transfection is a developing field that has applications in research and gene therapy. Potentially, mRNA transfection can be mediated efficiently by cell-penetrating peptides (CPPs) as they may be modified to target specific tissues. However, whilst CPPs are well-documented to transfect oligonucleotides and plasmids, mRNA transfection by CPPs has barely been explored. Here we report that peptides, including a truncated form of protamine and the same peptide fused to the CPP Xentry (Xentry-protamine; XP), can transfect mRNAs encoding reporter genes into human cells. Further, this transfection is enhanced by the anti-malarial chloroquine (CQ) and the toll-like receptor antagonist E6446 (6-[3-(pyrrolidin-1-yl)propoxy)-2-(4-(3-(pyrrolidin-1-yl)propoxy)phenyl]benzo[d]oxazole), with E6446 being >5-fold more potent than CQ at enhancing this transfection. Finally, E6446 facilitated the transfection by XP of mRNA encoding the cystic fibrosis transmembrane regulator, the protein mutated in cystic fibrosis. As such, these findings introduce E6446 as a novel transfection enhancer and may be of practical relevance to researchers seeking to improve the mRNA transfection efficiency of their preferred CPP.</p></div
    corecore