531 research outputs found

    The Imprint of Cosmic Reionization on Galaxy Clustering

    Full text link
    We consider the effect of reionization on the clustering properties of galaxy samples at intermediate redshifts (z~0.3-5.5). Current models for the reionization of intergalactic hydrogen predict that overdense regions will be reionized early, thus delaying the build up of stellar mass in the progenitors of massive lower-redshift galaxies. As a result, the stellar populations observed in intermediate redshift galaxies are somewhat younger and hence brighter in overdense regions of the Universe. Galaxy surveys would therefore be sensitive to galaxies with a somewhat lower dark matter mass in overdense regions. The corresponding increase in the observed number density of galaxies can be parameterized as a galaxy bias due to reionization. We model this process using merger trees combined with a stellar synthesis code. Our model demonstrates that reionization has a significant effect on the clustering properties of galaxy samples that are selected based on their star-formation properties. The bias correction in Lyman-break galaxies (including those in proposed baryonic oscillation surveys at z<1) is at the level of 10-20% for a halo mass of 10^12 solar masses, leading to corrections factors of 1.5-2 in the halo mass inferred from measurements of clustering length. The reionization of helium could also lead to a sharp increase in the amplitude of the galaxy correlation function at z~3. We find that the reionization bias is approximately independent of scale and halo mass. However since the traditional galaxy bias is mass dependent, the reionization bias becomes relatively more important for lower mass systems. The correction to the bias due to reionization is very small in surveys of luminous red galaxies at z<1.Comment: 17 pages, 6 figures. Submitted to MNRA

    Constraining the Quasar Contribution to the Reionisation of Cosmic Hydrogen

    Get PDF
    Absorption spectra of high redshift quasars suggest that the reionisation of cosmic hydrogen was complete near z~6. The dominant sources of ionising photons responsible for this reionisation are generally thought to be stars and quasars. In this paper we make a quantitative estimate of the relative contributions made by these sources. Our approach is to compute the evolution of the post overlap ionising background radiation by combining semi-analytic descriptions of reionisation in a clumpy medium with a model for the quasar luminosity function. Our overall model has two free parameters, the star formation efficiency and the minimum quasar luminosity. By adjusting these parameters, we constrain the relative contributions made by stars and quasars through comparison with reported observations (Fan et al. 2005). We find that the relative quasar contribution (at z=5.7) to the ionising background was between 1.4% and 14.5%. The range of uncertainty is dominated by the unknown minimum quasar luminosity.Comment: 8 pages, 2 figures. Accepted for publication in MNRA

    Far-Ultraviolet Observations of NGC 3516 using the Hopkins Ultraviolet Telescope

    Get PDF
    We observed the Seyfert 1 galaxy NGC 3516 twice during the flight of Astro-2 using the Hopkins Ultraviolet Telescope in March 1995. Simultaneous X-ray observations were performed with ASCA. Our far-ultraviolet spectra cover the spectral range 820-1840 A with a resolution of 2-4 A. No significant variations were found between the two observations. The total spectrum shows a red continuum, fΜ∌Μ−1.89f_\nu \sim \nu^{-1.89}, with an observed flux of 2.2×10−14 erg cm−2 s−1 A˚−1\rm 2.2 \times 10^{-14}~erg~cm^{-2}~s^{-1}~\AA^{-1} at 1450 A, slightly above the historical mean. Intrinsic absorption in Lyman ÎČ\beta is visible as well as absorption from O~vi 1032,1038, N~v 1239,1243, Si~iv 1394,1403, and C~iv 1548,1551. The UV absorption lines are far weaker than is usual for NGC~3516, and also lie closer to the emission line redshift rather than showing the blueshift typical of these lines when they are strong. The neutral hydrogen absorption, however, is blueshifted by 400 km s−1400~\rm km~s^{-1} relative to the systemic velocity, and it is opaque at the Lyman limit. The sharpness of the cutoff indicates a low effective Doppler parameter, b<20 km s−1b < \rm 20~km~s^{-1}. For b=10 km s−1b = \rm 10~km~s^{-1} the derived intrinsic column is 3.5×1017 cm−2\rm 3.5 \times 10^{17}~cm^{-2}. As in NGC~4151, a single warm absorber cannot produce the strong absorption visible over the wide range of observed ionization states. Matching both the UV and X-ray absorption simultaneously requires absorbers spanning a range of 10310^3 in both ionization parameter and column density.Comment: 18 pages, 4 PostScript figures, uses aaspp4.sty To appear in the August 20, 1996, issue of The Astrophysical Journa

    Far-UV Observations of NGC 4151 during the ORFEUS-SPAS II Mission

    Get PDF
    We observed the Seyfert 1 galaxy NGC 4151 on eleven occasions at 1-2 day intervals using the Berkeley spectrometer during the ORFEUS-SPAS II mission in 1996 November. The mean spectrum covers 912-1220 A at ~0.3 A resolution with a total exposure of 15,658 seconds. The mean flux at 1000 A was 4.7e-13 erg/cm^2/s/A. We identify the neutral hydrogen absorption with a number of components that correspond to the velocity distribution of \ion{H}{1} seen in our own Galaxy as well as features identified in the CIV 1549 absorption profile by Weymann et al. The main component of neutral hydrogen in NGC 4151 has a total column density of log N_HI = 18.7 +/- 1.5 cm^{-2} for a Doppler parameter b=250 +/- 50 km/s, and it covers 84 +/- 6% of the source. This is consistent with previous results obtained with the Hopkins Ultraviolet Telescope. Other intrinsic far-UV absorption features are not resolved, but the CIII* 1176 absorption line has a significantly higher blueshift relative to NGC 4151 than the CIII 977 resonance line. This implies that the highest velocity region of the outflowing gas has the highest density. Variations in the equivalent width of the CIII* 1176 absorption line anticorrelate with continuum variations on timescales of days. For an ionization timescale <1 day, we set an upper limit of 25 pc on the distance of the absorbing gas from the central source. The OVI 1034 and HeII 1085 emission lines also vary on timescales of 1-2 days, but their response to the continuum variations is complex. For some continuum variations they show no response, while for others the response is instantaneous to the limit of our sampling interval.Comment: 4 pages, 2 PostScript figures, uses emulateapj.sty, apjfonts.sty. To appear in the Astrophysical Journal (Letters) special issue for ORFEU

    Simultaneous Ultraviolet and X-ray Observations of the Seyfert Galaxy NGC 4151. I. Physical Conditions in the X-ray Absorbers

    Full text link
    We present a detailed analysis of the intrinsic X-ray absorption in the Seyfert 1 galaxy NGC 4151 using Chandra/HETGS data obtained 2002 May, as part of a program which included simultaneous UV spectra using HST/STIS and FUSE. NGC 4151 was in a relatively low flux state during the observations reported here, although roughly 2.5 times as bright in the 2 --10 keV band as during a Chandra observation in 2000. The soft X-ray band was dominated by emission lines, which show no discernible variation in flux between the two observations. The 2002 data show the presence of a very highly ionized absorber, in the form of H-like and He-like Mg, Si, and S lines, as well as lower ionization gas via the presence of inner-shell absorption lines from lower-ionization species of these elements. The former is too highly ionized to be radiatively accelerated in a sub-Eddington source such as NGC 4151. We find that the lower ionization gas had a column density a factor of ~ 3 higher during the 2000 observation. If due to bulk motion, we estimate that this component must have a velocity of more than 1250 km/sec transverse to our line-of-sight. We suggest that these results are consistent with a magneto-hydrodynamic flow.Comment: 42 pages, 14 figures. Accepted for publication in The Astrophysical Journa

    A Composite HST Spectrum of Quasars

    Get PDF
    We construct a composite quasar spectrum from 284 HST FOS spectra of 101 quasars with redshifts z > 0.33. The spectrum covers the wavelengths between 350 and 3000 A in the rest frame. There is a significant steepening of the continuum slope around 1050 A. The continuum between 1050 and 2200 A can be modeled as a power law with alpha = -0.99. For the full sample the power-law index in the extreme ultraviolet (EUV) between 350 and 1050 A is alpha = -1.96. The continuum flux in the wavelengths near the Lyman limit shows a depression of about 10 percent. The break in the power-law index and the slight depression of the continuum near the Lyman limit are features expected in Comptonized accretion-disk spectra.Comment: 10 figures To appear in the February 1, 1997, issue of the Ap.

    Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64

    Get PDF
    We present a moderate-resolution (~20 km/s) spectrum of the mini broad-absorption-line QSO PG1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional spectra at longer wavelengths were also obtained with the HST and ground-based telescopes. Broad absorption is present on the blue wings of CIII 977, Ly-beta, OVI 1032,1038, Ly-alpha, NV 1238,1242, SiIV 1393,1402, and CIV 1548,1450. The absorption profile can be fitted with five components at velocities of ~ -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The OVI emission feature is very weak, and the OVI/Lyalpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10^21 cm^-2, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.Comment: 23 pages, Latex, 5 figure

    ASCA Observations of the Composite Warm Absorber in NGC 3516

    Get PDF
    We obtained X-ray spectra of the Seyfert 1 galaxy NGC~3516 in March 1995 using ASCA. Simultaneous far-UV observations were obtained with HUT on the Astro-2 shuttle mission. The ASCA spectrum shows a lightly absorbed power law of energy index 0.78. The low energy absorbing column is significantly less than previously seen. Prominent O~vii and O~viii absorption edges are visible, but, consistent with the much lower total absorbing column, no Fe K absorption edge is detectable. A weak, narrow Fe~Kα\alpha emission line from cold material is present as well as a broad Fe~Kα\alpha line. These features are similar to those reported in other Seyfert 1 galaxies. A single warm absorber model provides only an imperfect description of the low energy absorption. In addition to a highly ionized absorber with ionization parameter U=1.66U = 1.66 and a total column density of 1.4×1022 cm−21.4 \times 10^{22}~\rm cm^{-2}, adding a lower ionization absorber with U=0.32U = 0.32 and a total column of 6.9×1021 cm−26.9 \times 10^{21}~\rm cm^{-2} significantly improves the fit. The contribution of resonant line scattering to our warm absorber models limits the Doppler parameter to <160 km s−1< 160~\rm km~s^{-1} at 90\% confidence. Turbulence at the sound speed of the photoionized gas provides the best fit. None of the warm absorber models fit to the X-ray spectrum can match the observed equivalent widths of all the UV absorption lines. Accounting for the X-ray and UV absorption simultaneously requires an absorbing region with a broad range of ionization parameters and column densities.Comment: 14 pages, 4 Postscript figures, uses aaspp4.sty To appear in the August 20, 1996, issue of The Astrophysical Journa

    Simultaneous Ultraviolet and X-ray Observations of the Seyfert Galaxy NGC 4151. II. Physical Conditions in the UV Absorbers

    Get PDF
    We present a detailed analysis of the intrinsic absorption in the Seyfert 1 galaxy NGC 4151 using UV spectra from the HST/STIS and FUSE, obtained 2002 May as part of a set of contemporaneous observations that included Chandra/HETGS spectra. In our analysis of the Chandra spectra, we determined that the soft X-ray absorber was the source of the saturated UV lines of O VI, C IV, and N V associated with the absorption feature at a radial velocity of ~ -500 km/sec, which we referred to as component D+E. In the present work, we have derived tighter constrains on the the line-of-sight covering factors, densities, and radial distances of the absorbers. We find that the Equivalent Widths (EWs) of the low-ionization lines associated with D+E varied over the period from 1999 July to 2002 May. The drop in the EWs of these lines between 2001 April and 2002 May are suggestive of bulk motion of gas out of our line-of-sight. If these lines from these two epochs arose in the same sub-component, the transverse velocity of the gas is ~ 2100 km/sec. Transverse velocities of this order are consistent with an origin in a rotating disk, at the roughly radial distance we derived for D+E.Comment: 51 pages, including 12 figures. Accepted for publication in ApJ Supplement
    • 

    corecore