10 research outputs found

    Role of virgin coconut oil VCO as co-extractant for obtaining xanthones from mangosteen Garcinia mangostana pericarp with supercritical carbon dioxide extraction

    Get PDF
    Virgin coconut oil (VCO) was used as co-extractant with supercritical carbon dioxide (scCO2) extraction for obtaining xanthones from mangosteen pericarp (MP) without organic co-solvents. In each experiment, 120 g of dried MP that had median particle sizes of 0.85 mm was used. Extraction of MP with 40% VCO co-extractant using scCO2 (1.08 kg/h) for 420 min at 430 bar and 70 °C gave α-mangostin (32.2 mg/g), γ-mangostin (7.2 mg/g), xanthones (28.2 mg/g) in extract and an extraction yield of 31%. The role of VCO is that it promotes dissolution of xanthones and mass transfer into the scCO2 phase as elucidated with the Pardo-Castaño model. The Lentz equation was generalized in terms of (P, T, %VCO, ρCO2) to correlate all extraction curve data to within 7.4% and to estimate extraction yield crossover regions. Xanthones can be separated from mangosteen pericarp with VCO and scCO2 extraction without organic co-solvents

    A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.)

    No full text
    Abstract The sunflower (Helianthus annuus L.) seed and sprout is a ubiquitous crop with abundant nutrients and biological activities. This review summarizes the nutritional and medical importance currently recognized but under-researched concerning both seed and sprout highlighting the potential benefits of their phytochemical constituents including phenolic acids, flavonoids and tocopherols. Furthermore, the dynamic metabolite changes which occur during germination and biological activities are evaluated. The aim is to provide scientific evidence for improving the dietary and pharmaceutical applications of this common but popular crop as a functional food

    Solvent fractionation of rambutan (Nephelium lappaceum L.) kernel fat for production of non-hydrogenated solid fat: Influence of time and solvent type

    Get PDF
    The present study performed isothermal (25 °C) solvent fractionation of rambutan (Nephelium lappaceum L.) kernel fat (RKF) to obtain the fat fraction that had melting properties comparable to a commercial hydrogenated solid fat. The effect of two fractionation parameters, holding time (12, 18 and 24 h) and solvent types (acetone and ethanol), on the properties of fractionated fat were investigated. The results showed that a fractionation time increase caused an increased yield and decreased iodine value for the high melting or stearin fractions. The thermal behaviors and solid fat index (SFI) of these stearin fractions were different from the original fat, especially for stearin from acetone fractionation. The major fatty acid in this stearin fraction was arachidic acid (C20:0) consisting of more than 90%. Overall, we demonstrated that acetone fractionation of RKF at 25 °C for 24 h is effective for producing a solid fat fraction, which has comparable crystallizing and melting properties to commercial hydrogenated fat. The fractionated rambutan fat obtained by this process may lead to its potential use in specific food products

    Solvent fractionation of rambutan (Nephelium lappaceum L.) kernel fat for production of non-hydrogenated solid fat: Influence of time and solvent type

    No full text
    The present study performed isothermal (25 °C) solvent fractionation of rambutan (Nephelium lappaceum L.) kernel fat (RKF) to obtain the fat fraction that had melting properties comparable to a commercial hydrogenated solid fat. The effect of two fractionation parameters, holding time (12, 18 and 24 h) and solvent types (acetone and ethanol), on the properties of fractionated fat were investigated. The results showed that a fractionation time increase caused an increased yield and decreased iodine value for the high melting or stearin fractions. The thermal behaviors and solid fat index (SFI) of these stearin fractions were different from the original fat, especially for stearin from acetone fractionation. The major fatty acid in this stearin fraction was arachidic acid (C20:0) consisting of more than 90%. Overall, we demonstrated that acetone fractionation of RKF at 25 °C for 24 h is effective for producing a solid fat fraction, which has comparable crystallizing and melting properties to commercial hydrogenated fat. The fractionated rambutan fat obtained by this process may lead to its potential use in specific food products

    Effects of germinating temperature and time on metabolite profiles of sunflower (Helianthus annuus L.) seed

    No full text
    Abstract Sprouts with higher levels of nutrients and lower content of antinutritional substances have been gained a growing interest in the influence on the human's health. The study of the influence of germination temperature and time on the metabolite profiles of sunflower seed was studied by a metabolomics approach based on gas chromatography–flame ionization detection (GC‐FID). Samples were extracted and fractionated covering a wide range of lipophilic and hydrophilic spectra. A total of 90 metabolites were identified by comparison with reference standards. Principal component analysis (PCA) revealed distinct dynamic changes in metabolites with the germinating time. Heatmap and agglomerative hierarchical clustering analysis revealed the differences and similarities among the samples. The germinating sunflower seeds clustered into three major groups. For instance, group I with a high content of sterols, monosaccharide, and amino acids, indicating the germination process, resulted in an increase in amino acids and monosaccharide. Group II had a high content of FAME and FFA. Relative targeted quantification of metabolites visually depicted by heatmap showed decreases in fatty acid methyl ester (FAME) and free fatty acid (FFA), and increases in amino acids, α‐tocopherol, sterols, and γ‐aminobutyric acid (GABA) during germination. Sunflower seeds germinated at 25°C were better for the accumulation of α‐tocopherol, stigmasterol, leucine, proline, methionine, glutamine, and GABA compared with those at 35°C. These results help to better understand how germination conditions change the nutritional quality of germinated sunflower seeds from a metabolite profile view, allowing for the rational screening and usage of germinated sunflower seeds in the food industry

    Comparison of Phytochemicals, Antioxidant, and In Vitro Anti-Alzheimer Properties of Twenty-Seven Morus spp. Cultivated in Thailand

    No full text
    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. To fight the disease, natural products, including mulberry, with antioxidant activities and inhibitory activities against key enzymes (acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and beta-secretase 1 (BACE-1)) are of interest. However, even in the same cultivars, mulberry trees grown in different populated locations might possess disparate amounts of phytochemical profiles, leading to dissimilar health properties, which cause problems when comparing different cultivars of mulberry. Therefore, this study aimed to comparatively investigate the phytochemicals, antioxidant activities, and inhibitory activities against AChE, BChE, and BACE-1, of twenty-seven Morus spp. cultivated in the same planting area in Thailand. The results suggested that Morus fruit samples were rich in phenolics, especially cyanidin, kuromanin, and keracyanin. Besides, the aqueous Morus fruit extracts exhibited antioxidant activities, both in single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms, while strong inhibitory activities against AD key enzymes were observed. Interestingly, among the twenty-seven Morus spp., Morus sp. code SKSM 810191 with high phytochemicals, antioxidant activities and in vitro anti-AD properties is a promising cultivar for further developed as a potential mulberry resource with health benefits against AD

    Resistance to Three Distinct Begomovirus Species in the Agronomical Superior Tropical Pumpkin Line AVPU1426 Developed at the World Vegetable Center

    No full text
    The Squash Leaf Curl China Virus (SLCCNV) and Tomato Leaf Curl New Delhi Virus (ToLCNDV) are species of Begomovirus (whitefly-vectored Geminiviridae) and cause serious damage to the cucurbit crops of the genus Cucurbita in the areas of South and Southeast Asia, across Asia, the Middle East and the Mediterranean, respectively. Cucurbita moschata’s inbred line AVPU1426, developed at the World Vegetable Center (WorldVeg) from a Bangladeshi landrace through pedigree selection, was observed to be resistant to both begomoviruses in field tests conducted at the WorldVeg Research and Training Station, Kasetsart University, Kamphaeng Saen, Thailand, which is a hotspot for these viruses. When AVPU1426 was tested for reaction to inoculation by viruliferous whiteflies with Squash Leaf Curl Philippines Virus (Taiwan strain) (SLCPV-TW) in the screen net-house at WorldVeg headquarters in Taiwan, it showed good resistance, though SLCPV-TW DNA-A could be detected in all inoculated plants, indicating that it did not show immunity to this virus. The objective of this study was to validate the resistance to SLCCNV and ToLCNDV in AVPU1426 by using whitefly-mediated inoculations to determine the mode of inheritance of the resistance. The results showed that AVPU1426 was resistant to SLCCNV and ToLCNDV. Upon crossing AVPU1426 with a susceptible check variety, Waltham Butternut, the resistance to both begomoviruses was observed to be conferred by a single recessive gene. This open-pollinated pumpkin line AVPU1426 bears flat round, mottled green immature fruits with yellow flesh in mature fruit. The fruit yield of AVPU1426 (20.74 t/ha−1) was comparable to ‘Rajah’ (18.61 t/ha−1), a recently released commercial F1 hybrid of East-West Seed (EWS). The fruit of AVPU1426 were estimated to have a good average β-carotene content (1.57 mg/100 g fresh weight). This line is a good source to breed pumpkins resistant to the three begomoviruses

    Resistance to Three Distinct Begomovirus Species in the Agronomical Superior Tropical Pumpkin Line AVPU1426 Developed at the World Vegetable Center

    No full text
    The Squash Leaf Curl China Virus (SLCCNV) and Tomato Leaf Curl New Delhi Virus (ToLCNDV) are species of Begomovirus (whitefly-vectored Geminiviridae) and cause serious damage to the cucurbit crops of the genus Cucurbita in the areas of South and Southeast Asia, across Asia, the Middle East and the Mediterranean, respectively. Cucurbita moschata’s inbred line AVPU1426, developed at the World Vegetable Center (WorldVeg) from a Bangladeshi landrace through pedigree selection, was observed to be resistant to both begomoviruses in field tests conducted at the WorldVeg Research and Training Station, Kasetsart University, Kamphaeng Saen, Thailand, which is a hotspot for these viruses. When AVPU1426 was tested for reaction to inoculation by viruliferous whiteflies with Squash Leaf Curl Philippines Virus (Taiwan strain) (SLCPV-TW) in the screen net-house at WorldVeg headquarters in Taiwan, it showed good resistance, though SLCPV-TW DNA-A could be detected in all inoculated plants, indicating that it did not show immunity to this virus. The objective of this study was to validate the resistance to SLCCNV and ToLCNDV in AVPU1426 by using whitefly-mediated inoculations to determine the mode of inheritance of the resistance. The results showed that AVPU1426 was resistant to SLCCNV and ToLCNDV. Upon crossing AVPU1426 with a susceptible check variety, Waltham Butternut, the resistance to both begomoviruses was observed to be conferred by a single recessive gene. This open-pollinated pumpkin line AVPU1426 bears flat round, mottled green immature fruits with yellow flesh in mature fruit. The fruit yield of AVPU1426 (20.74 t/ha−1) was comparable to ‘Rajah’ (18.61 t/ha−1), a recently released commercial F1 hybrid of East-West Seed (EWS). The fruit of AVPU1426 were estimated to have a good average β-carotene content (1.57 mg/100 g fresh weight). This line is a good source to breed pumpkins resistant to the three begomoviruses
    corecore