69 research outputs found

    Large gap quantum spin Hall insulator, massless Dirac fermions and bilayer graphene analogue in InAs/Ga(In)Sb heterostructures

    Full text link
    The quantum spin Hall insulator (QSHI) state has been demonstrated in two semiconductor systems - HgTe/CdTe quantum wells (QWs) and InAs/GaSb QW bilayers. Unlike the HgTe/CdTe QWs, the inverted band gap in InAs/GaSb QW bilayers does not open at the Γ\Gamma point of the Brillouin zone, preventing the realization of massless Dirac fermions. Here, we propose a new class of semiconductor systems based on InAs/Ga(In)Sb multilayers, hosting a QSHI state, a graphene-like phase and a bilayer graphene analogue, depending on their layer thicknesses and geometry. The QSHI gap in the novel structures can reach up to 60 meV for realistic design and parameters. This value is twice as high as the thermal energy at room temperature and significantly extends the application potential of III-V semiconductor-based topological devices.Comment: 5 pages, 4 figure

    Phase transitions in two tunnel-coupled HgTe quantum wells. Bilayer graphene analogy and beyond

    Full text link
    HgTe quantum wells possess remarkable physical properties as for instance the quantum spin Hall state and the 'single-valley' analog of graphene, depending on their layer thicknesses and barrier composition. However, double HgTe quantum wells yet contain more fascinating and still unrevealed features. Here we report on the study of the quantum phase transitions in tunnel-coupled HgTe layers separated by CdTe barrier. We demonstrate that this system has a 3/2 pseudo spin degree of freedom, which features a number of particular properties associated with the spin-dependent coupling between HgTe layers. We discover a specific metal phase arising in a wide range of HgTe and CdTe layer thicknesses, in which a gapless bulk and a pair of helical edge states coexist. This phase holds some properties of bilayer graphene such as an unconventional quantum Hall effect and an electrically-tunable band gap. In this 'bilayer graphene' phase, electric field opens the band gap and drives the system into the quantum spin Hall state. Furthermore, we discover a new type of quantum phase transition arising from a mutual inversion between second electron- and hole-like subbands. This work paves the way towards novel materials based on multi-layered topological insulators

    Spin splitting of surface states in HgTe quantum wells

    Get PDF
    We report on beating appearance in Shubnikov-de Haas oscillations in conduction band of 18-22nm HgTe quantum wells under applied top-gate voltage. Analysis of the beatings reveals two electron concentrations at the Fermi level arising due to Rashba-like spin splitting of the first conduction subband H1. The difference dN_s in two concentrations as a function of the gate voltage is qualitatively explained by a proposed toy electrostatic model involving the surface states localized at quantum well interfaces. Experimental values of dN_s are also in a good quantitative agreement with self-consistent calculations of Poisson and Schrodinger equations with eight-band kp Hamiltonian. Our results clearly demonstrate that the large spin splitting of the first conduction subband is caused by surface nature of H1H1 states hybridized with the heavy-hole band.Comment: 7 pages, 7 figure

    Pressure and temperature driven phase transitions in HgTe quantum wells

    Full text link
    We present theoretical investigations of pressure and temperature driven phase transitions in HgTe quantum wells grown on CdTe buffer. Using the 8-band \textbf{k\cdotp} Hamiltonian we calculate evolution of energy band structure at different quantum well width with hydrostatic pressure up to 20 kBar and temperature ranging up 300 K. In particular, we show that in addition to temperature, tuning of hydrostatic pressure allows to drive transitions between semimetal, band insulator and topological insulator phases. Our realistic band structure calculations reveal that the band inversion under hydrostatic pressure and temperature may be accompanied by non-local overlapping between conduction and valence bands. The pressure and temperature phase diagrams are presented.Comment: 9 pages, 8 figures + Supplemental material (5 pages

    Temperature-induced topological phase transition in HgTe quantum wells

    Full text link
    We report a direct observation of temperature-induced topological phase transition between trivial and topological insulator in HgTe quantum well. By using a gated Hall bar device, we measure and represent Landau levels in fan charts at different temperatures and we follow the temperature evolution of a peculiar pair of "zero-mode" Landau levels, which split from the edge of electron-like and hole-like subbands. Their crossing at critical magnetic field BcB_c is a characteristic of inverted band structure in the quantum well. By measuring the temperature dependence of BcB_c, we directly extract the critical temperature TcT_c, at which the bulk band-gap vanishes and the topological phase transition occurs. Above this critical temperature, the opening of a trivial gap is clearly observed.Comment: 5 pages + Supplemental Materials; Phys. Rev. Lett. (accepted

    Temperature-driven single-valley Dirac fermions in HgTe quantum wells

    Full text link
    We report on temperature-dependent magnetospectroscopy of two HgTe/CdHgTe quantum wells below and above the critical well thickness dcd_c. Our results, obtained in magnetic fields up to 16 T and temperature range from 2 K to 150 K, clearly indicate a change of the band-gap energy with temperature. The quantum well wider than dcd_c evidences a temperature-driven transition from topological insulator to semiconductor phases. At the critical temperature of 90 K, the merging of inter- and intra-band transitions in weak magnetic fields clearly specifies the formation of gapless state, revealing the appearance of single-valley massless Dirac fermions with velocity of 5.6×1055.6\times10^5 m×\timess1^{-1}. For both quantum wells, the energies extracted from experimental data are in good agreement with calculations on the basis of the 8-band Kane Hamiltonian with temperature-dependent parameters.Comment: 5 pages, 3 figures and Supplemental Materials (4 pages
    corecore