18 research outputs found

    An acidic microenvironment in Tuberculosis increases extracellular matrix degradation by regulating macrophage inflammatory responses

    Get PDF
    Mycobacterium tuberculosis (M.tb) infection causes marked tissue inflammation leading to lung destruction and morbidity. The inflammatory extracellular microenvironment is acidic, however the effect of this acidosis on the immune response to M.tb is unknown. Using RNA-seq we show that acidosis produces system level transcriptional change in M.tb infected human macrophages regulating almost 4000 genes. Acidosis specifically upregulated extracellular matrix (ECM) degradation pathways with increased expression of Matrix metalloproteinases (MMPs) which mediate lung destruction in Tuberculosis. Macrophage MMP-1 and -3 secretion was increased by acidosis in a cellular model. Acidosis markedly suppresses several cytokines central to control of M.tb infection including TNF-α and IFN-γ. Murine studies demonstrated expression of known acidosis signaling G-protein coupled receptors OGR-1 and TDAG-8 in Tuberculosis which are shown to mediate the immune effects of decreased pH. Receptors were then demonstrated to be expressed in patients with TB lymphadenitis. Collectively, our findings show that an acidic microenvironment modulates immune function to reduce protective inflammatory responses and increase extracellular matrix degradation in Tuberculosis. Acidosis receptors are therefore potential targets for host directed therapy in patients

    Cooling rate effects on the structure of 45S5 bioglass: Insights from experiments and simulations

    Get PDF
    Due to its ability to bond with living tissues upon dissolution, 45S5 bioglass and related compositions materials are extensively used for the replacement, regeneration, and repair of hard tissues in the human body. However, the details of its atomic structure remain debated. This is partially due to the non-equilibrium nature of glasses, as their non-crystalline structure is highly dependent on their thermal history, namely, the cooling rate used during quenching. Herein, combining molecular dynamics (MD) simulations with cooling rates ranging over several orders of magnitude and experimental studies using nuclear magnetic resonance (NMR), we investigate the structure of the nominal 45S5 bioglass composition. These results suggest that the MD simulation results when extrapolated to experimental cooling rates can provide a reasonable estimate of the structure of 45S5 bioglass. Finally, based on these results, we suggest the propensity of the phosphate group to form isolated orthophosphate species. Overall, these results reconcile the simulation and experimental results on the structure of 45S5 bioglass, and particularly on the speciation of the phosphate group, which may be key in controlling the bioactivity of 45S5 bioglass

    Platelets Regulate Pulmonary Inflammation and Tissue Destruction in Tuberculosis.

    Get PDF
    RATIONALE: Platelets may interact with the immune system in tuberculosis (TB) to regulate human inflammatory responses that lead to morbidity and spread of infection. OBJECTIVES: To identify a functional role of platelets in the innate inflammatory and matrix-degrading response in TB. METHODS: Markers of platelet activation were examined in plasma from 50 patients with TB before treatment and 50 control subjects. Twenty-five patients were followed longitudinally. Platelet-monocyte interactions were studied in a coculture model infected with live, virulent Mycobacterium tuberculosis (M.tb) and dissected using qRT-PCR, Luminex multiplex arrays, matrix degradation assays, and colony counts. Immunohistochemistry detected CD41 (cluster of differentiation 41) expression in a pulmonary TB murine model, and secreted platelet factors were measured in BAL fluid from 15 patients with TB and matched control subjects. MEASUREMENTS AND MAIN RESULTS: Five of six platelet-associated mediators were upregulated in plasma of patients with TB compared with control subjects, with concentrations returning to baseline by Day 60 of treatment. Gene expression of the monocyte collagenase MMP-1 (matrix metalloproteinase-1) was upregulated by platelets in M.tb infection. Platelets also enhanced M.tb-induced MMP-1 and -10 secretion, which drove type I collagen degradation. Platelets increased monocyte IL-1 and IL-10 and decreased IL-12 and MDC (monocyte-derived chemokine; also known as CCL-22) secretion, as consistent with an M2 monocyte phenotype. Monocyte killing of intracellular M.tb was decreased. In the lung, platelets were detected in a TB mouse model, and secreted platelet mediators were upregulated in human BAL fluid and correlated with MMP and IL-1β concentrations. CONCLUSIONS: Platelets drive a proinflammatory, tissue-degrading phenotype in TB

    Mycobacterium tuberculosis Lineage Influences Innate Immune Response and Virulence and Is Associated with Distinct Cell Envelope Lipid Profiles

    Get PDF
    The six major genetic lineages of Mycobacterium tuberculosis are strongly associated with specific geographical regions, but their relevance to bacterial virulence and the clinical consequences of infection are unclear. Previously, we found that in Vietnam, East Asian/Beijing and Indo-Oceanic strains were significantly more likely to cause disseminated tuberculosis with meningitis than those from the Euro-American lineage. To investigate this observation we characterised 7 East Asian/Beijing, 5 Indo-Oceanic and 6 Euro-American Vietnamese strains in bone-marrow-derived macrophages, dendritic cells and mice. East Asian/Beijing and Indo-Oceanic strains induced significantly more TNF-α and IL-1β from macrophages than the Euro-American strains, and East Asian/Beijing strains were detectable earlier in the blood of infected mice and grew faster in the lungs. We hypothesised that these differences were induced by lineage-specific variation in cell envelope lipids. Whole lipid extracts from East Asian/Beijing and Indo-Oceanic strains induced higher concentrations of TNF-α from macrophages than Euro-American lipids. The lipid extracts were fractionated and compared by thin layer chromatography to reveal a distinct pattern of lineage-associated profiles. A phthiotriol dimycocerosate was exclusively produced by East Asian/Beijing strains, but not the phenolic glycolipid previously associated with the hyper-virulent phenotype of some isolates of this lineage. All Indo-Oceanic strains produced a unique unidentified lipid, shown to be a phenolphthiocerol dimycocerosate dependent upon an intact pks15/1 for its production. This was described by Goren as the ‘attenuation indictor lipid’ more than 40 years ago, due to its association with less virulent strains from southern India. Mutation of pks15/1 in a representative Indo-Oceanic strain prevented phenolphthiocerol dimycocerosate synthesis, but did not alter macrophage cytokine induction. Our findings suggest that the early interactions between M. tuberculosis and host are determined by the lineage of the infecting strain; but we were unable to show these differences are driven by lineage-specific cell-surface expressed lipids

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Understanding the role of post-indentation recovery on the hardness of glasses: Case of silica, borate, and borosilicate glasses

    No full text
    Hardness is an important property of glasses, which depends strongly on the method of measurement. Herein, we estimate the hardness of three oxide glasses, namely, pure silica (0B), borosilicate (37B), and sodium borate (75B) glass samples at micro and nanoscale. We observe that annealing of these glass samples, after polishing, has little effect on their hardness and modulus. Interestingly, we observe that the nanoindentation is unable to capture the full extent of elastic recovery, thereby underestimating the hardness of these glasses. We show that the post-indentation elastic recovery is highly dependent on the chemical composition of glass. Combining nanoindentation and atomic force microscopy (AFM) imaging, we accurately capture the complete elastic recovery of glass samples, thereby calculating the true hardness values from indentation depth profiles. Overall, we show that post-indentation elastic recovery plays a crucial role in determining the hardness of glasses
    corecore