11,421 research outputs found
Information reuse in dynamic spectrum access
Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE
Strong light fields coax intramolecular reactions on femtosecond time scales
Energetic H ions are formed as a result of intra-molecular
rearrangement during fragmentation of linear alcohols (methanol, ethanol,
propanol, hexanol, and dodecanol) induced by intense optical fields produced by
100 fs long, infrared, laser pulses of peak intensity 8 W
cm. Polarization dependent measurements show, counterintuitively, that
rearrangement is induced by the strong optical field within a single laser
pulse, and that it occurs before Coulomb explosion of the field-ionized
multiply charged alcohols
Test vectors for Rankin-Selberg -functions
We study the local zeta integrals attached to a pair of generic
representations  of , , over a -adic
field. Through a process of unipotent averaging we produce a pair of
corresponding Whittaker functions whose zeta integral is non-zero, and we
express this integral in terms of the Langlands parameters of  and .
In many cases, these Whittaker functions also serve as a test vector for the
associated Rankin-Selberg (local) -function.Comment: arXiv admin note: text overlap with arXiv:1804.0772
Weil's converse theorem with poles
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available
When is electromagnetic spectrum fungible?
Fungibility is a common assumption for market-based spectrum management. In this paper, we explore the dimensions of practical fungibility of frequency bands from the point of view of the spectrum buyer who intends to use it. The exploration shows that fungibility is a complex, multidimensional concept that cannot casually be assumed. We develop two ideas for quantifying fungibility-(i) of a fungibility space in which the 'distance' between two slices of spectrum provides score of fungibility and (ii) a probabilistic score of fungibility. © 2012 IEEE
Internal avalanches in models of granular media
We study the phenomenon of internal avalanching within the context of
recently introduced lattice models of granular media. The avalanche is produced
by pulling out a grain at the base of the packing and studying how many grains
have to rearrange before the packing is once more stable. We find that the
avalanches are long-ranged, decaying as a power-law. We study the distriution
of avalanches as a function of the density of the packing and find that the
avalanche distribution is a very sensitive structural probe of the system.Comment: 12 pages including 9 eps figures, LaTeX. To appear in Fractal
A case for adaptive sub-carrier level power allocation in OFDMA networks
In today's OFDMA networks, the transmission power is typically fixed and the same for all the sub-carriers that compose a channel. The sub-carriers though, experience different degrees of fading and thus, the received power is different for different sub-carriers; while some frequencies experience deep fades, others are relatively unaffected. In this paper, we make a case of redistributing the power across the sub-carriers (subject to a fixed power budget constraint) to better cope with this frequency selectivity. Specifically, we design a joint power and rate adaptation scheme (called JPRA for short) wherein power redistribution is combined with sub-carrier level rate adaptation to yield significant throughput benefits. We further consider two variants of JPRA: (a) JPRA-CR where, the power is redistributed across sub-carriers so as to support a maximum common rate (CR) across sub-carriers and (b) JPRA-MT where, the goal is to redistribute power such that the transmission time of a packet is minimized. While the first variant decreases transceiver complexity and is simpler, the second is geared towards achieving the maximum throughput possible. We implement both variants of JPRA on our WARP radio testbed. Our extensive experiments demonstrate that our scheme provides a 35% improvement in total network throughput in testbed experiments compared to FARA, a scheme where only sub-carrier level rate adaptation is used. We also perform simulations to demonstrate the efficacy of JPRA in larger scale networks. © 2012 ACM
Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation
The Liouville equation governing the evolution of the density matrix for an
atomic/molecular system is expressed in terms of a commutator between the
density matrix and the Hamiltonian, along with terms that account for decay and
redistribution. For finding solutions of this equation, it is convenient first
to reformulate the Liouville equation by defining a vector corresponding to the
elements of the density operator, and determining the corresponding
time-evolution matrix. For a system of N energy levels, the size of the
evolution matrix is N2xN2. When N is very large, evaluating the elements of
these matrices becomes very cumbersome. We describe a novel algorithm that can
produce the evolution matrix in an automated fashion for an arbitrary value of
N. As a non-trivial example, we apply this algorithm to a fifteen-level atomic
system used for producing optically controlled polarization rotation. We also
point out how such a code can be extended for use in an atomic system with
arbitrary number of energy levels
- …
