53 research outputs found

    RNase L Contributes to Experimentally Induced Type 1 Diabetes Onset in Mice

    Get PDF
    The cause of type 1 diabetes continues to be a focus of investigation. Studies have revealed that interferon α (IFNα) in pancreatic islets after viral infection or treatment with double-stranded RNA (dsRNA), a mimic of viral infection, is associated with the onset of type 1 diabetes. However, how IFNα contributes to the onset of type 1 diabetes is obscure. In this study, we found that 2-5A-dependent RNase L (RNase L), an IFNα-inducible enzyme that functions in the antiviral and antiproliferative activities of IFN, played an important role in dsRNA-induced onset of type 1 diabetes. Using RNase L-deficient, rat insulin promoter-B7.1 transgenic mice, which are more vulnerable to harmful environmental factors such as viral infection, we demonstrated that deficiency of RNase L in mice resulted in a significant delay of diabetes onset induced by polyinosinic:polycytidylic acid (poly I:C), a type of synthetic dsRNA, and streptozotocin, a drug which can artificially induce type 1-like diabetes in experimental animals. Immunohistochemical staining results indicated that the population of infiltrated CD8+T cells was remarkably reduced in the islets of RNase L-deficient mice, indicating that RNase L may contribute to type 1 diabetes onset through regulating immune responses. Furthermore, RNase L was responsible for the expression of certain proinflammatory genes in the pancreas under induced conditions. Our findings provide new insights into the molecular mechanism underlying β-cell destruction and may indicate novel therapeutic strategies for treatment and prevention of the disease based on the selective regulation and inhibition of RNase L

    RNase L Contributes to Experimentally Induced Type 1 Diabetes Onset in Mice

    Get PDF
    The cause of type 1 diabetes continues to be a focus of investigation. Studies have revealed that interferon α (IFNα) in pancreatic islets after viral infection or treatment with double-stranded RNA (dsRNA), a mimic of viral infection, is associated with the onset of type 1 diabetes. However, how IFNα contributes to the onset of type 1 diabetes is obscure. In this study, we found that 2-5A-dependent RNase L (RNase L), an IFNα-inducible enzyme that functions in the antiviral and antiproliferative activities of IFN, played an important role in dsRNA-induced onset of type 1 diabetes. Using RNase L-deficient, rat insulin promoter-B7.1 transgenic mice, which are more vulnerable to harmful environmental factors such as viral infection, we demonstrated that deficiency of RNase L in mice resulted in a significant delay of diabetes onset induced by polyinosinic:polycytidylic acid (poly I:C), a type of synthetic dsRNA, and streptozotocin, a drug which can artificially induce type 1-like diabetes in experimental animals. Immunohistochemical staining results indicated that the population of infiltrated CD8+T cells was remarkably reduced in the islets of RNase L-deficient mice, indicating that RNase L may contribute to type 1 diabetes onset through regulating immune responses. Furthermore, RNase L was responsible for the expression of certain proinflammatory genes in the pancreas under induced conditions. Our findings provide new insights into the molecular mechanism underlying β-cell destruction and may indicate novel therapeutic strategies for treatment and prevention of the disease based on the selective regulation and inhibition of RNase L

    RNase L Interacts with Filamin A To Regulate Actin Dynamics and Barrier Function for Viral Entry

    Get PDF
    The actin cytoskeleton and its network of associated proteins constitute a physical barrier that viruses must circumvent to gain entry into cells for productive infection. The mechanisms by which the physical signals of infection are sensed by the host to activate an innate immune response are not well understood. The antiviral endoribonuclease RNase L is ubiquitously expressed in a latent form and activated upon binding 2-5A, a unique oligoadenylate produced during viral infections. We provide evidence that RNase L in its inactive form interacts with the actin-binding protein Filamin A to modulate the actin cytoskeleton and inhibit virus entry. Cells lacking either RNase L or Filamin A displayed increased virus entry which was exacerbated in cells lacking both proteins. RNase L deletion mutants that reduced Filamin A interaction displayed a compromised ability to restrict virus entry, supporting the idea of an important role for the RNase L-Filamin A complex in barrier function. Remarkably, both the wild type and a catalytically inactive RNase L mutant were competent to reduce virus entry when transfected into RNase L-deficient cells, indicating that this novel function of RNase L is independent of its enzymatic activity. Virus infection and RNase L activation disrupt its association with Filamin A and release RNase L to mediate its canonical nuclease-dependent antiviral activities. The dual functions of RNase L as a constitutive component of the actin cytoskeleton and as an induced mediator of antiviral signaling and effector functions provide insights into its mechanisms of antiviral activity and opportunities for the development of novel antiviral agents

    Role of Viral Hemorrhagic Septicemia Virus Matrix (M) Protein in Suppressing Host Transcription

    Get PDF
    ABSTRACT Viral hemorrhagic septicemia virus (VHSV) is a pathogenic fish rhabdovirus found in discrete locales throughout the Northern Hemisphere. VHSV infection of fish cells leads to upregulation of the host's virus detection response, but the virus quickly suppresses interferon (IFN) production and antiviral gene expression. By systematically screening each of the six VHSV structural and nonstructural genes, we identified matrix protein (M) as the virus' most potent antihost protein. Only M of VHSV genotype IV sublineage b (VHSV-IVb) suppressed mitochondrial antiviral signaling protein (MAVS) and type I IFN-induced gene expression in a dose-dependent manner. M also suppressed the constitutively active simian virus 40 (SV40) promoter and globally decreased cellular RNA levels. Chromatin immunoprecipitation (ChIP) studies illustrated that M inhibited RNA polymerase II (RNAP II) recruitment to gene promoters and decreased RNAP II C-terminal domain (CTD) Ser2 phosphorylation during VHSV infection. However, transcription directed by RNAP I to III was suppressed by M. To identify regions of functional importance, M proteins from a variety of VHSV strains were tested in cell-based transcriptional inhibition assays. M of a particular VHSV-Ia strain, F1, was significantly less potent than IVb M at inhibiting SV40/luciferase (Luc) expression yet differed by just 4 amino acids. Mutation of D62 to alanine alone, or in combination with an E181-to-alanine mutation (D62A E181A), dramatically reduced the ability of IVb M to suppress host transcription. Introducing either M D62A or D62A E181A mutations into VHSV-IVb via reverse genetics resulted in viruses that replicated efficiently but exhibited less cytotoxicity and reduced antitranscriptional activities, implicating M as a primary regulator of cytopathicity and host transcriptional suppression. IMPORTANCE Viruses must suppress host antiviral responses to replicate and spread between hosts. In these studies, we identified the matrix protein of the deadly fish novirhabdovirus VHSV as a critical mediator of host suppression during infection. Our studies indicated that M alone could block cellular gene expression at very low expression levels. We identified several subtle mutations in M that were less potent at suppressing host transcription. When these mutations were engineered back into recombinant viruses, the resulting viruses replicated well but elicited less toxicity in infected cells and activated host innate immune responses more robustly. These data demonstrated that VHSV M plays an important role in mediating both virus-induced cell toxicity and viral replication. Our data suggest that its roles in these two processes can be separated to design effective attenuated viruses for vaccine candidates

    Modulatory effects by neodymium-doped yttrium aluminum garnet laser on fibroblast attachment to single rooted tooth surfaces following ultrasonic scaling and root planning: An in vitro study

    No full text
    Context: One of the most important goals of periodontal therapy is connective tissue reattachment to previously diseased root surfaces. In the recent years, laser therapy has been considered as an important tool in improving the treatment of periodontal disease. Aims: To evaluate the neodymium-doped yttrium aluminum garnet (Nd: YAG) lasers effects on root surfaces affected by periodontal disease and compare this treatment with scaling and root planning (SRP) in terms of fibroblast attachment. Materials and Methods: A sample of 30 single-rooted human teeth extracted because of advanced periodontal disease was used in this study. Sixty specimens obtained by longitudinal sectioning were randomly divided in three groups. Group A control (untreated); Group B SRP; Group C laser (Nd: YAG) and ultrasonic scaling. All specimens were incubated with fibroblast suspension and then fixed and observed under scanning electron microscope. Results: With a median of 8, the control group (Group A) exhibited the least number of total fibroblasts among all the three groups. The laser and scaling - treated group (Group C) showed the highest number of fibroblasts (median = 49, mean ± standard deviation [SD] = 48.28 ± 17.18), followed by SRP only (Group B, median = 22, mean ± SD = 22.24 ± 8.67). Conclusions: Nd: YAG laser irradiation at specific energy densities can be used as a useful tool to condition the root surfaces, enhancing fibroblast attachment. Hence aiding in re-establishment of the connective tissue attachment to the root surfaces of previously diseased teeth

    ABCE1 Regulates RNase L-Induced Autophagy during Viral Infections

    No full text
    Host response to a viral infection includes the production of type I interferon (IFN) and the induction of interferon-stimulated genes that have broad antiviral effects. One of the key antiviral effectors is the IFN-inducible oligoadenylate synthetase/ribonuclease L (OAS/RNase L) pathway, which is activated by double-stranded RNA to synthesize unique oligoadenylates, 2-5A, to activate RNase L. RNase L exerts an antiviral effect by cleaving diverse RNA substrates, limiting viral replication; many viruses have evolved mechanisms to counteract the OAS/RNase L pathway. Here, we show that the ATP-binding cassette E1 (ABCE1) transporter, identified as an inhibitor of RNase L, regulates RNase L activity and RNase L-induced autophagy during viral infections. ABCE1 knockdown cells show increased RNase L activity when activated by 2-5A. Compared to parental cells, the autophagy-inducing activity of RNase L in ABCE1-depleted cells is enhanced with early onset. RNase L activation in ABCE1-depleted cells inhibits cellular proliferation and sensitizes cells to apoptosis. Increased activity of caspase-3 causes premature cleavage of autophagy protein, Beclin-1, promoting a switch from autophagy to apoptosis. ABCE1 regulates autophagy during EMCV infection, and enhanced autophagy in ABCE1 knockdown cells promotes EMCV replication. We identify ABCE1 as a host protein that inhibits the OAS/RNase L pathway by regulating RNase L activity, potentially affecting antiviral effects

    The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response

    No full text
    The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed

    RNase L Cleavage Products Promote Switch from Autophagy to Apoptosis by Caspase-Mediated Cleavage of Beclin-1

    No full text
    Autophagy and apoptosis share regulatory molecules enabling crosstalk in pathways that affect cellular homeostasis including response to viral infections and survival of tumor cells. Ribonuclease L (RNase L) is an antiviral endonuclease that is activated in virus-infected cells and cleaves viral and cellular single-stranded RNAs to produce small double-stranded RNAs with roles in amplifying host responses. Activation of RNase L induces autophagy and apoptosis in many cell types. However, the mechanism by which RNase L mediates crosstalk between these two pathways remains unclear. Here we show that small dsRNAs produced by RNase L promote a switch from autophagy to apoptosis by caspase-mediated cleavage of Beclin-1, terminating autophagy. The caspase 3-cleaved C-terminal fragment of Beclin-1 enhances apoptosis by translocating to the mitochondria along with proapoptotic protein, Bax, and inducing release of cytochrome C to the cytosol. Cleavage of Beclin-1 determines switch to apoptosis since expression of caspase-resistant Beclin-1 inhibits apoptosis and sustains autophagy. Moreover, inhibiting RNase L-induced autophagy promotes cell death and inhibiting apoptosis prolongs autophagy in a cross-inhibitory mechanism. Our results demonstrate a novel role of RNase L generated small RNAs in cross-talk between autophagy and apoptosis that impacts the fate of cells during viral infections and cancer
    corecore