30 research outputs found

    Biocompatibility and Toxicity of Poly(vinyl alcohol)/N,O-Carboxymethyl Chitosan Scaffold

    Get PDF
    The in vivo biocompatibility and toxicity of PVA/NOCC scaffold were tested by comparing them with those of a biocompatible inert material HAM in a rat model. On Day 5, changes in the blood parameters of the PVA/NOCC-implanted rats were significantly higher than those of the control. The levels of potassium, creatinine, total protein, A/G, hemoglobulin, erythrocytes, WBC, and platelets were not significantly altered in the HAM-implanted rats, when compared with those in the control. On Day 10, an increase in potassium, urea, and GGT levels and a decrease in ALP, platelet, and eosinophil levels were noted in the PVA/NOCC-implanted rats, when compared with control. These changes were almost similar to those noted in the HAM-implanted rats, except for the unaltered potassium and increased neutrophil levels. On Day 15, the total protein, A/G, lymphocyte, monocyte, and eosinophil levels remained unaltered in the PVA/NOCC-implanted rats, whereas urea, A/G, WBC, lymphocyte, and monocyte levels remained unchanged in the HAM-implanted rats. Histology and immunohistochemistry analyses revealed inflammatory infiltration in the PVA/NOCC-implanted rats, but not in the HAM-implanted rats. Although a low toxic tissue response was observed in the PVA/NOCC-implanted rats, further studies are necessary to justify the use of this material in tissue engineering applications

    In-vitro biocompatibility study of hydroxyapatite coated on Co-Cr-Mo with oxide interlayer

    Get PDF
    The effects of oxide interlayer on cobalt-chromium-molybdenum substrate were investigated in order to improve the quality of hydroxyapatite (HA) coating as well as enhance the cell responses. Substrates were oxidized at temperature of 850 °C and 1050 °C for 3 hours. Oxidized substrates were then coated with HA slurry using dip coating technique. Analysis of surface morphology, thickness and chemical composition of oxide interlayer prior to HA coating were performed using field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy and grazing X-ray diffraction respectively. It seems that rough surface of oxide interlayer provides better mechanical interlocking of HA particles to the substrate surface with no visible micro-cracks. In addition, the HA coated substrates with oxide interlayer also demonstrate strong attachment and better proliferation of cells compared to HA coated substrates without oxide interlayer. The results also demonstrates that cells were spread out more actively as earlier as day 7 and have greater extensions of filopodium on HA coated substrates with oxide interlayer. It is concluded that the introduction of an intermediate oxide layer on Co-Cr-Mo substrate prior to HA coating has shown a positive effect in terms of improving the quality of HA coating as well as cell bioactivity performance

    Surface Modification on CoCrMo Alloy to Improve the Adhesion Strength of Hydroxyapatite Coating

    Get PDF
    Surface modification is often required in order to improve the biological and tribological properties of metallic implants. In the present study, Co-Cr-Mo alloy was oxidized in atmospheric condition to create oxide interlayer (Cr2O3) prior to hydroxyapatite (HA) coating. The effect of oxide interlayer on the adhesion strength of HA coating on oxidized Co-Cr-Mo substrate was investigated. The surface of oxide interlayer was rough and contained abundant of pores, which helps in providing better mechanical interlocking to HA coating. Scanning electron microscopy and X-ray diffraction techniques were used to characterize the surface morphology of the HA coating whilst a Revetest scratch test was used to measure the adhesion strength of HA coating on oxidized substrates. The oxide interlayer on the substrate was able to prevent severe cracks while maintaining the porosity of the coated layer. Scratch test results showed that adhesion strength of the HA coating on substrates with interlayer was significantly higher than those without interlayer (1.40 N Vs 1.04 N; p<0.05). Increasing sintering temperature increases adhesion strength proportionally. These findings suggest that the porous oxide interlayer provides better anchorage whilst minimizing surface cracks of HA on Co-Cr-Mo substrates

    Study on the AFM Force Curve Common Errors and Their Effects on the Calculated Nanomechanical Properties of Materials

    Get PDF
    The atomic force microscope (AFM) force curve has been widely used for determining the mechanical properties of materials due to its high resolution, whereby very low (piconewton) forces and distances as small as nanometers can be measured. However, sometimes the resultant force curve obtained from AFM is slightly different from those obtained from a more typical nanoindentation force curve due to the AFM piezo’s hysteresis. In this study the nanomechanical properties of either a sulfonated polyether ether ketone (SPEEK) treated layer or bare polyether ether ketone (PEEK) were evaluated via AFM nanoindentation and a nanomechanical test system to probe the possible error of the calculated nanomechanical properties due to the AFM piezo’s hysteresis. The results showed that AFM piezo’s hysteresis caused the error in the calculated nanomechanical properties of the materials

    Human amniotic membrane as a chondrocyte carrier vehicle/substrate: in vitro study

    No full text
    Human amniotic membrane (HAM) is an established biomaterial used in many clinical applications. However, its use for tissue engineering purposes has not been fully realized. A study was therefore conducted to evaluate the feasibility of using HAM as a chondrocyte substrate/carrier. HAMs were obtained from fresh human placenta and were process to produced air dried HAM (AdHAM) and freeze dried HAM (FdHAM). Rabbit chondrocytes were isolated and expanded in vitro and seeded onto these preparations. Cell proliferation, GAG expression and GAG/cell expression were measured at days 3, 6, 9, 12, 15, 21, and 28. These were compared to chondrocytes seeded onto plastic surfaces. Histological analysis and scanning electron microscopy was performed to observe cell attachment. There was significantly higher cell proliferation rates observed between AdHAM (13-51, P=0.001) or FdHAM (18-48, p=0.001) to chondrocytes in monolayer. Similarly, GAG and GAG/cell expressed in AdHAM (33-82, p=0.001; 22-60, p=0.001) or FdHAM (41-81, p=0.001: 28-60, p=0.001) were significantly higher than monolayer cultures. However, no significant differences were observed in the proliferation rates (p=0.576), GAG expression (p=0.476) and GAG/cell expression (p=0.135) between AdHAM and FdHAM. The histology and scanning electron microscopy assessments demonstrates good chondrocyte attachments on both HAMs. In conclusion, both AdHAM and FdHAM provide superior chondrocyte proliferation, GAG expression, and attachment than monolayer cultures making it a potential substrate/carrier for cell based cartilage therapy and transplantation. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 99A: 500-506, 2011

    Characterization of bovine-derived porous hydroxyapatite scaffold and its potential to support osteogenic differentiation of human bone marrow derived mesenchymal stem cells

    No full text
    Porous three-dimensional hydroxyapatite (HA) scaffolds were prepared using bovine cortical bone derived HA (BDHA). Analyses of the morphology, chemical composition, and phase purity of the scaffold were performed using scanning electron microscopy (SEM), micro-computer tomography (micro-CT), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM images revealed the rough and porous surface of the scaffold, while micro-CT showed the average porous volume of 76.7 +/- 0.6 and pore size of 0.04-0.25 mm. Single phase corresponding to standard HA was observed using XRD, and FTIR confirmed the presence of functional groups similar to HA. The EDX analysis revealed a Ca/P ratio of 1.61, which was comparable with HA stoichiometry. Compressive strength of the BDHA scaffold was found to be 1.3 +/- 0.09 MPa. After 14 days of human bone marrow stromal cells (hBMSCs) seeding, SEM and confocal analysis revealed cell attachment to the surface and infiltration into the pores. Alamar blue and alkaline phosphatase assays showed significantly increased cell proliferation and differentiation in the BDHA scaffold, when compared with that in the monolayer (p < 0.01). In addition, quantitative real-time polymerase chain reaction (qPCR) data confirmed the up regulation of genes involved in osteogenic differentiation of mesenchymal stem cells. Our findings indicate that BDHA scaffold provides a favorable physiological environment for enhanced cell attachment, proliferation, and osteogenic differentiation of hBMSCs. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved

    In-vitro biocompatibility study of hydroxyapatite coated on Co-Cr-Mo with oxide interlayer

    No full text
    The effects of oxide interlayer on cobalt-chromium-molybdenum substrate were investigated in order to improve the quality of hydroxyapatite (HA) coating as well as enhance the cell responses. Substrates were oxidized at temperature of 850 °C and 1050 °C for 3 hours. Oxidized substrates were then coated with HA slurry using dip coating technique. Analysis of surface morphology, thickness and chemical composition of oxide interlayer prior to HA coating were performed using field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy and grazing X-ray diffraction respectively. It seems that rough surface of oxide interlayer provides better mechanical interlocking of HA particles to the substrate surface with no visible micro-cracks. In addition, the HA coated substrates with oxide interlayer also demonstrate strong attachment and better proliferation of cells compared to HA coated substrates without oxide interlayer. The results also demonstrates that cells were spread out more actively as earlier as day 7 and have greater extensions of filopodium on HA coated substrates with oxide interlayer. It is concluded that the introduction of an intermediate oxide layer on Co-Cr-Mo substrate prior to HA coating has shown a positive effect in terms of improving the quality of HA coating as well as cell bioactivity performance

    In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method

    No full text
    Diopside was synthesized from biowaste (Eggshell) by sol–gel combustion method at low calcination temperature and the influence of two different fuels (urea, l-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications
    corecore