153 research outputs found

    Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer

    Get PDF
    <p>Aims: DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. In addition, DDX3 was shown to be a direct downstream target of HIF-1ฮฑ (the master regulatory of the hypoxia response) in breast cancer cell lines. However, the relation between DDX3 and hypoxia has not been addressed in human tumors. In this paper, we studied the relation between DDX3 and the hypoxic responsive proteins in human breast cancer.</p> <p>Methods and Results: DDX3 expression was investigated by immunohistochemistry in breast cancer in comparison with hypoxia related proteins HIF-1ฮฑ, GLUT1, CAIX, EGFR, HER2, Akt1, FOXO4, p53, ERฮฑ, COMMD1, FER kinase, PIN1, E-cadherin, p21, p27, Transferrin receptor, FOXO3A, c-Met and Notch1. DDX3 was overexpressed in 127 of 366 breast cancer patients, and was correlated with overexpression of HIF-1ฮฑ and its downstream genes CAIX and GLUT1. Moreover, DDX3 expression correlated with hypoxia-related proteins EGFR, HER2, FOXO4, ERฮฑ and c-Met in a HIF-1ฮฑ dependent fashion, and with COMMD1, FER kinase, Akt1, E-cadherin, TfR and FOXO3A independent of HIF-1ฮฑ.</p> <p>Conclusions: In invasive breast cancer, expression of DDX3 was correlated with overexpression of HIF-1ฮฑ and many other hypoxia related proteins, pointing to a distinct role for DDX3 under hypoxic conditions and supporting the oncogenic role of DDX3 which could have clinical implication for current development of DDX3 inhibitors.</p&gt

    Ascites Volumes and the Ovarian Cancer Microenvironment

    Get PDF
    Epithelial ovarian cancer is the leading cause of death from gynecologic malignancy among women in developed countries. Epithelial ovarian cancer has a poor prognosis, due to the aggressive characteristics of the disease combined with the lack of effective therapies. Options for late-stage ovarian cancer are limited and invasive, especially once malignant ascites develops. Malignant ascites, a complication observed in terminal ovarian cancer, significantly contributes to poor quality of life and to mortality. Excess accumulation of fluid in the peritoneal cavity occurs due to a combination of impaired fluid drainage and increased net filtration, mostly due to increasing intraperitoneal vascular permeability. Here we applied non-invasive magnetic resonance imaging (MRI) and spectroscopic imaging (MRSI) of syngeneic mouse tumors in vivo, and high-resolution 1H MRS of mouse tumor extracts, to characterize the relationship between ascites volumes and the vasculature and metabolism of an experimental model of ovarian cancer. Differences were observed in the tumor vasculature and metabolism in tumors based on ascites volumes that provide new insights into the development of this condition

    Hypoxia-driven cell motility reflects the interplay between JMY and HIF-1ฮฑ.

    Get PDF
    Junction-mediating and regulatory protein (JMY) is a novel p53 cofactor that regulates p53 activity during stress. JMY interacts with p300/CBP, which are ubiquitous transcriptional co-activators that interact with a variety of sequence-specific transcription factors, including hypoxia-inducible factor-1ฮฑ (HIF-1ฮฑ). In addition, JMY is an actin-nucleating protein, which, through its WH2 domains, stimulates cell motility. In this study, we show that JMY is upregulated during hypoxia in a HIF-1ฮฑ-dependent manner. The JMY gene contains HIF-responsive elements in its promoter region and HIF-1ฮฑ is recruited to its promoter during hypoxia. HIF-1ฮฑ drives transcription of JMY, which accounts for its induction under hypoxia. Moreover, the enhanced cell motility and invasion that occurs during hypoxia requires JMY, as depleting JMY under hypoxic conditions causes decreased cell motility. Our results establish the interplay between JMY and HIF-1ฮฑ as a new mechanism that controls cell motility under hypoxic stress

    The influence of invasive growth pattern and microvessel density on prognosis in colorectal cancer and colorectal liver metastases

    Get PDF
    The nature of the invasive growth pattern and microvessel density (MVD) have been suggested to be predictors of prognosis in primary colorectal cancer (CRC) and colorectal liver metastases. The purpose of the present study was to determine whether these two histological features were interrelated and to assess their relative influence on disease recurrence and survival following surgical resection. Archival tissue was retrieved from 55 patients who had undergone surgical resection for primary CRC and matching liver metastases. The nature of the invasive margin was determined by haematoxylin and eosin (H&E) histochemistry. Microvessel density was visualised using immunohistochemical detection of CD31 antigen and quantified using image capture computer software. Clinical details and outcome data were retrieved by case note review and collated with invasive margin and MVD data in a statistical database. Primary CRCs with a pushing margin tended to form capsulated liver metastases (P<0.001) and had a significantly better disease-free survival than the infiltrative margin tumours (log rank P=0.01). Primary cancers with a high MVD tended to form high MVD liver metastases (P=0.007). Microvessel density was a significant predictor of disease recurrence in primary CRCs (P=0.006), but not liver metastases. These results suggest that primary CRCs and their liver metastases show common histological features. This may reflect common mechanisms underlying the tumourโ€“host interaction

    Aberrant Epigenetic Silencing Is Triggered by a Transient Reduction in Gene Expression

    Get PDF
    Aberrant epigenetic silencing plays a major role in cancer formation by inactivating tumor suppressor genes. While the endpoints of aberrant silencing are known, i.e., promoter region DNA methylation and altered histone modifications, the triggers of silencing are not known. We used the tet-off system to test the hypothesis that a transient reduction in gene expression will sensitize a promoter to undergo epigenetic silencing.The tet responsive promoter (P(TRE)) was used to drive expression of the selectable human HPRT cDNA in independent transfectants of an Hprt deficient mouse cell line. In this system, high basal HPRT expression is greatly reduced when doxycycline (Dox) is added to the culture medium. Exposure of the P(TRE)-HPRT transfectants to Dox induced HPRT deficient clones in a time dependent manner. A molecular analysis demonstrated promoter region DNA methylation, loss of histone modifications associated with expression (i.e., H3 lysine 9 and 14 acetylation and lysine 4 methylation), and acquisition of the repressive histone modification H3 lysine 9 methylation. These changes, which are consistent with aberrant epigenetic silencing, were not present in the Dox-treated cultures, with the exception of reduced H3 lysine 14 acetylation. Silenced alleles readily reactivated spontaneously or after treatment of cells with inhibitors of histone deacetylation and/or DNA methylation, but re-silencing of reactivated alleles did not require a new round of Dox exposure. Inhibition of histone deacetylation inhibited both the induction of silencing and re-silencing, whereas inhibition of DNA methylation had no such effect.This study demonstrates that a transient reduction in gene expression triggers a pathway for aberrant silencing in mammalian cells and identifies histone deacetylation as a critical early step in this process. DNA methylation, in contrast, is a secondary step in the silencing pathway under study. A model to explain these observations is offered

    Comparison of hypoxia transcriptome in vitro with in vivo gene expression in human bladder cancer

    Get PDF
    Hypoxia-inducible genes have been linked to the aggressive phenotype of cancer. However, nearly all work on hypoxia-regulated genes has been conducted in vitro on cell lines. We investigated the hypoxia transcriptome in primary human bladder cancer using cDNA microarrays to compare genes induced by hypoxia in vitro in bladder cancer cell line EJ28 with genes upregulated in 39 bladder tumour specimens (27 superficial and 12 invasive). We correlated array mRNA fold changes with carbonic anhydrase 9 (CA IX) staining of tumours as a surrogate marker of hypoxia. Of 6000 genes, 32 were hypoxia inducible in vitro more than two-fold, five of which were novel, including lactate transporter SLC16A3 and RNAse 4. Eight of 32 hypoxia-inducible genes in vitro were also upregulated on the vivo array. Vascular endothelial growth factor mRNA was upregulated two-fold by hypoxia and 2โ€“18-fold in 31 out of 39 tumours. Glucose transporter 1 was also upregulated on both arrays mRNA, and fold changes on the in vivo array significantly correlated with CA IX staining of tumours (P=0.008). However, insulin-like growth factor binding protein 3 mRNA was the most strongly differentially expressed gene in both arrays and this confirmed its upregulation in urine of bladder cancer patients (n=157, P<0.01). This study defines genes suitable for an in vivo hypoxia โ€˜profile', shows the heterogeneity of the hypoxia response and describes new hypoxia-regulated genes

    LC/MS-Based Quantitative Proteomic Analysis of Paraffin-Embedded Archival Melanomas Reveals Potential Proteomic Biomarkers Associated with Metastasis

    Get PDF
    BACKGROUND: Melanoma metastasis status is highly associated with the overall survival of patients; yet, little is known about proteomic changes during melanoma tumor progression. To better understand the changes in protein expression involved in melanoma progression and metastasis, and to identify potential biomarkers, we conducted a global quantitative proteomic analysis on archival metastatic and primary melanomas. METHODOLOGY AND FINDINGS: A total of 16 metastatic and 8 primary cutaneous melanomas were assessed. Proteins were extracted from laser captured microdissected formalin fixed paraffin-embedded archival tissues by liquefying tissue cells. These preparations were analyzed by a LC/MS-based label-free protein quantification method. More than 1500 proteins were identified in the tissue lysates with a peptide ID confidence level of >75%. This approach identified 120 significant changes in protein levels. These proteins were identified from multiple peptides with high confidence identification and were expressed at significantly different levels in metastases as compared with primary melanomas (q-Value<0.05). CONCLUSIONS AND SIGNIFICANCE: The differentially expressed proteins were classified by biological process or mapped into biological system networks, and several proteins were implicated by these analyses as cancer- or metastasis-related. These proteins represent potential biomarkers for tumor progression. The study successfully identified proteins that are differentially expressed in formalin fixed paraffin-embedded specimens of metastatic and primary melanoma

    Genetic Ablation of Bcl-x Attenuates Invasiveness without Affecting Apoptosis or Tumor Growth in a Mouse Model of Pancreatic Neuroendocrine Cancer

    Get PDF
    Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-xL, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic ฮฒ-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-xL upon exogenous over-expression

    ZEB1 Links p63 and p73 in a Novel Neuronal Survival Pathway Rapidly Induced in Response to Cortical Ischemia

    Get PDF
    Background: Acute hypoxic/ischemic insults to the forebrain, often resulting in significant cellular loss of the cortical parenchyma, are a major cause of debilitating injury in the industrialized world. A clearer understanding of the pro-death/ pro-survival signaling pathways and their downstream targets is critical to the development of therapeutic interventions to mitigate permanent neurological damage. Methodology/Principal Findings: We demonstrate here that the transcriptional repressor ZEB1, thought to be involved in regulating the timing and spatial boundaries of basic-Helix-Loop-Helix transactivator-mediated neurogenic determination/ differentiation programs, functions to link a pro-survival transcriptional cascade rapidly induced in cortical neurons in response to experimentally induced ischemia. Employing histological, tissue culture, and molecular biological read-outs, we show that this novel pro-survival response, initiated through the rapid induction of p63, is mediated ultimately by the transcriptional repression of a pro-apoptotic isoform of p73 by ZEB1. We show further that this phylogenetically conserved pathway is induced as well in the human cortex subjected to episodes of clinically relevant stroke. Conclusions/Significance: The data presented here provide the first evidence that ZEB1 induction is part of a protective response by neurons to ischemia. The stroke-induced increase in ZEB1 mRNA and protein levels in cortical neurons is both developmentally and phylogenetically conserved and may therefore be part of a fundamental cellular response to thi
    • โ€ฆ
    corecore