2 research outputs found

    Observation of Charge Transfer in Heterostructures Composed of MoSe<sub>2</sub> Quantum Dots and a Monolayer of MoS<sub>2</sub> or WSe<sub>2</sub>

    No full text
    Monolayer transition metal dichalcogenides (TMDs) are atomically thin semiconductor films that are ideal platforms for the study and engineering of quantum heterostructures for optoelectronic applications. We present a simple method for the fabrication of TMD heterostructures containing MoSe<sub>2</sub> quantum dots (QDs) and a MoS<sub>2</sub> or WSe<sub>2</sub> monolayer. The strong modification of photoluminescence and Raman spectra that includes the quenching of MoSe<sub>2</sub> QDs and the varied spectral weights of trions for the MoS<sub>2</sub> and WSe<sub>2</sub> monolayers were observed, suggesting the charge transfer occurring in these TMD heterostructures. Such optically active heterostructures, which can be conveniently fabricated by dispersing TMD QDs onto TMD monolayers, are likely to have various nanophotonic applications because of their versatile and controllable properties

    Thickness-Dependent Phonon Renormalization and Enhanced Raman Scattering in Ultrathin Silicon Nanomembranes

    No full text
    We report on the thickness-dependent Raman spectroscopy of ultrathin silicon (Si) nanomembranes (NMs), whose thicknesses range from 2 to 18 nm, using several excitation energies. We observe that the Raman intensity depends on the thickness and the excitation energy due to the combined effects of interference and resonance from the band-structure modulation. Furthermore, confined acoustic phonon modes in the ultrathin Si NMs were observed in ultralow-frequency Raman spectra, and strong thickness dependence was observed near the quantum limit, which was explained by calculations based on a photoelastic model. Our results provide a reliable method with which to accurately determine the thickness of Si NMs with thicknesses of less than a few nanometers
    corecore