13 research outputs found

    Distribution and seasonality of rhinovirus and other respiratory viruses in a cross-section of asthmatic children in Trinidad, West Indies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood asthma in the Caribbean is advancing in prevalence and morbidity. Though viral respiratory tract infections are reported triggers for exacerbations, information on these infections with asthma is sparse in Caribbean territories. We examined the distribution of respiratory viruses and their association with seasons in acute and stable asthmatic children in Trinidad.</p> <p>Methods</p> <p>In a cross-sectional study of 70 wheezing children attending the emergency department for nebulisation and 80 stable control subjects (2 to 16 yr of age) in the asthma clinic, nasal specimens were collected during the dry (<it>n </it>= 38, January to May) and rainy (<it>n </it>= 112, June to December) seasons. A multitarget, sensitive, specific high-throughput Respiratory MultiCode assay tested for respiratory-virus sequences for eight distinct groups: human rhinovirus, respiratory syncytial virus, parainfluenza virus, influenza virus, metapneumovirus, adenovirus, coronavirus, and enterovirus.</p> <p>Results</p> <p>Wheezing children had a higher [χ<sup>2 </sup>= 5.561, <it>p </it>= 0.018] prevalence of respiratory viruses compared with stabilized asthmatics (34.3% (24) versus (vs.) 17.5% (14)). Acute asthmatics were thrice as likely to be infected with a respiratory virus (OR = 2.5, 95% CI = 1.2 – 5.3). The predominant pathogens detected in acute versus stable asthmatics were the rhinovirus (RV) (<it>n </it>= 18, 25.7% vs. <it>n </it>= 7, 8.8%; <it>p </it>= 0.005), respiratory syncytial virus B (RSV B) (<it>n </it>= 2, 2.9% vs. <it>n </it>= 4, 5.0%), and enterovirus (<it>n </it>= 1, 1.4% vs. <it>n </it>= 2, 2.5%). Strong odds for rhinoviral infection were observed among nebulised children compared with stable asthmatics (<it>p </it>= 0.005, OR = 3.6, 95% CI = 1.4 – 9.3,). RV was prevalent throughout the year (Dry, <it>n </it>= 6, 15.8%; Rainy, <it>n </it>= 19, 17.0%) and without seasonal association [χ<sup>2 </sup>= 0.028, <it>p </it>= 0.867]. However it was the most frequently detected virus [Dry = 6/10, (60.0%); Rainy = 19/28, (67.9%)] in both seasons.</p> <p>Conclusion</p> <p>Emergent wheezing illnesses during childhood can be linked to infection with rhinovirus in Trinidad's tropical environment. Viral-induced exacerbations of asthma are independent of seasons in this tropical climate. Further clinical and virology investigations are recommended on the role of infections with the rhinovirus in Caribbean childhood wheeze.</p

    A Diverse Group of Previously Unrecognized Human Rhinoviruses Are Common Causes of Respiratory Illnesses in Infants

    Get PDF
    Human rhinoviruses (HRVs) are the most prevalent human pathogens, and consist of 101 serotypes that are classified into groups A and B according to sequence variations. HRV infections cause a wide spectrum of clinical outcomes ranging from asymptomatic infection to severe lower respiratory symptoms. Defining the role of specific strains in various HRV illnesses has been difficult because traditional serology, which requires viral culture and neutralization tests using 101 serotype-specific antisera, is insensitive and laborious.To directly type HRVs in nasal secretions of infants with frequent respiratory illnesses, we developed a sensitive molecular typing assay based on phylogenetic comparisons of a 260-bp variable sequence in the 5' noncoding region with homologous sequences of the 101 known serotypes. Nasal samples from 26 infants were first tested with a multiplex PCR assay for respiratory viruses, and HRV was the most common virus found (108 of 181 samples). Typing was completed for 101 samples and 103 HRVs were identified. Surprisingly, 54 (52.4%) HRVs did not match any of the known serotypes and had 12-35% nucleotide divergence from the nearest reference HRVs. Of these novel viruses, 9 strains (17 HRVs) segregated from HRVA, HRVB and human enterovirus into a distinct genetic group ("C"). None of these new strains could be cultured in traditional cell lines.By molecular analysis, over 50% of HRV detected in sick infants were previously unrecognized strains, including 9 strains that may represent a new HRV group. These findings indicate that the number of HRV strains is considerably larger than the 101 serotypes identified with traditional diagnostic techniques, and provide evidence of a new HRV group

    Identification of culturable HRV clinical isolates by phylogenetic tree reconstruction.

    No full text
    a)<p>Four isolates clustered with P1-P2 reference sequence with highly significant bootstrap values (96%), and one with lower but still significant bootstrap value (62%).</p

    Distribution of pairwise nucleotide divergence values between 101 HRV serotypes.

    No full text
    <p>The horizontal axis shows the value of divergence (%) in pairwise comparisons and the column height indicates the frequency of observations. Divergence values were calculated as distance value×100%.</p

    Phylogenetic tree depicting the relationships between 9 HRVC strains (W in red) and all known HEV (n = 74) in the P1-P2 region of 5'NCR. HEV include polioviruses (PV), coxsackieviruses A (CA), coxsackieviruses B (CB), echoviruses (E) and the newer numbered EVs.

    No full text
    <p>For 5 serotypes (CA16, CA24, CB4, CB5 and EV71), 2 different P1-P2 sequences were found in GenBank. This tree was generated as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000966#pone-0000966-g003" target="_blank">Figure 3</a>. HRVC and HEV clustered into 2 different groups.</p

    Detection of known HRV serotypes in clinical specimens.

    No full text
    a)<p>The first 19 serotypes are HRVA. HRV14, 27, 52 and 83, are HRVB.</p>b)<p>Three additional HRVs clustered with HRV89 reference sequence with insignificant bootstrap values (42–50%).</p
    corecore