507 research outputs found

    Pancreatic cysts suspected to be branch duct intraductal papillary mucinous neoplasm without concerning features have low risk for development of pancreatic cancer.

    Get PDF
    BackgroundThe risk of developing pancreatic cancer is uncertain in patients with clinically suspected branch duct intraductal papillary mucinous neoplasm (BD-IPMN) based on the "high-risk stigmata" or "worrisome features" criteria proposed in the 2012 international consensus guidelines ("Fukuoka criteria").MethodsRetrospective case series involving patients referred for endoscopic ultrasound (EUS) of indeterminate pancreatic cysts with clinical and EUS features consistent with BD-IPMN. Rates of pancreatic cancer occurring at any location in the pancreas were compared between groups of patients with one or more Fukuoka criteria ("Highest-Risk Group", HRG) and those without these criteria ("Lowest-Risk Group", LRG).ResultsAfter exclusions, 661 patients comprised the final cohort (250 HRG and 411 LRG patients), 62% female with an average age of 67 years and 4 years of follow up. Pancreatic cancer, primarily adenocarcinoma, occurred in 60 patients (59 HRG, 1 LRG). Prevalent cancers diagnosed during EUS, immediate surgery, or first year of follow up were found in 48/661 (7.3%) of cohort and exclusively in HRG (33/77, 42.3%). Using Kaplan-Meier method, the cumulative incidence of cancer at 7 years was 28% in HRG and 1.2% in LRG patients (P<0.001).ConclusionsThis study supports using Fukuoka criteria to stratify the immediate and long-term risks of pancreatic cancer in presumptive BD-IPMN. The risk of pancreatic cancer was highest during the first year and occurred exclusively in those with "high-risk stigmata" or "worrisome features" criteria. After the first year all BD-IPMN continued to have a low but persistent cancer risk

    Calculation of the Coherent Synchrotron Radiation Impedance from a Wiggler

    Full text link
    Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter KK. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of KK. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies.Comment: 10 pages, 8 figure

    Analysis of a three-component model phase diagram by Catastrophe Theory

    Full text link
    We analyze the thermodynamical potential of a lattice gas model with three components and five parameters using the methods of Catastrophe Theory. We find the highest singularity, which has codimension five, and establish its transversality. Hence the corresponding seven-degree Landau potential, the canonical form Wigwam or A6A_6, constitutes the adequate starting point to study the overall phase diagram of this model.Comment: 16 pages, Latex file, submitted to Phys. Rev.

    The accuracy of beliefs about retrieval cues

    Get PDF
    We investigated the accuracy of predictions about semantic, environmental, and phonological cues for remembering. Subjects rated the pleasantness of 10 words in each of four rooms, predicted the number of words that they would recall with and without one of the three types of cues, and then were tested for free or cued recall. Consistent with their predictions, subjects who received semantic cues recalled more words than did subjects in the free-recall group. The subjects in the other cuing conditions did not benefit from the cues; furthermore, they overestimated the value of phonological cues, and they believed that environmental cues were ineffective. Finally, confidence ratings for cued-recall predictions did not reflect the pattern of cued-recall performance. Subjects were least confident about their predictions for semantic cuing and most confident about their predictions for recall to be cued phonologically

    A thermodynamically self-consistent theory for the Blume-Capel model

    Full text link
    We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in non-zero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the λ\lambda-line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.Comment: 11 figures. to appear in Physical Review

    Exact correlation functions of Bethe lattice spin models in external fields

    Full text link
    We develop a transfer matrix method to compute exactly the spin-spin correlation functions of Bethe lattice spin models in the external magnetic field h and for any temperature T. We first compute the correlation function for the most general spin - S Ising model, which contains all possible single-ion and nearest-neighbor pair interactions. This general spin - S Ising model includes the spin-1/2 simple Ising model and the Blume-Emery-Griffiths (BEG) model as special cases. From the spin-spin correlation functions, we obtain functions of correlation length for the simple Ising model and BEG model, which show interesting scaling and divergent behavior as T approaches the critical temperature. Our method to compute exact spin-spin correlation functions may be applied to other Ising-type models on Bethe and Bethe-like lattices.Comment: 19 page

    Classification of phase transitions and ensemble inequivalence, in systems with long range interactions

    Full text link
    Systems with long range interactions in general are not additive, which can lead to an inequivalence of the microcanonical and canonical ensembles. The microcanonical ensemble may show richer behavior than the canonical one, including negative specific heats and other non-common behaviors. We propose a classification of microcanonical phase transitions, of their link to canonical ones, and of the possible situations of ensemble inequivalence. We discuss previously observed phase transitions and inequivalence in self-gravitating, two-dimensional fluid dynamics and non-neutral plasmas. We note a number of generic situations that have not yet been observed in such systems.Comment: 42 pages, 11 figures. Accepted in Journal of Statistical Physics. Final versio
    • …
    corecore