298 research outputs found

    Long-range elastic guidance mechanisms for electrostatic comb-drive actuators

    Get PDF
    The range of motion and output force of the often used electrostatic comb-drive with folded flexure straight guidance, as shown in Figure 1, is limited by sideways instability due to poor sideways stiffness of the folded flexure at relatively large deflections [1]

    Optimization of a Thermal Flow Sensor for Acoustic Particle Velocity Measurements

    Get PDF
    In this paper, a thermal flow sensor consisting of two or three heated wires, the Microflown, is treated for application to acoustic measurements. It is sensitive to flow ("particle velocity"), contrary to conventional microphones that measure acoustic pressures. A numerical analysis, allowing for detailed parametric studies, is presented. The results are experimentally verified. Consequently, improved devices were fabricated, and also sensors with a new geometry consisting of three wires, instead of the usual two, of which the central wire is relatively most heated. These devices are the best performing Microflowns to date with a frequency range extending from 0 to over 5 kHz and a minimum detectable particle velocity level of about 70 nm/s at 2 to 5 kHz (i.e., 3 dB PVL or SPL, corresponding to a pressure of 3.1/spl middot/10/sup -5/ Pa at a free field specific acoustic impedance)

    A single-mask thermal displacement sensor in MEMS

    Get PDF
    Position sensing in MEMS is often based on the principle of varying capacitance [1]. Alternative position sensing principles include using integrated optical waveguides [2] or varying thermal conductance [3]. Lantz et al demonstrated a thermal displacement sensor achieving nanometre resolution on a 100mm range. However a multi-mask production process and manual assembly were needed to fabricate this displacement sensor. In this work we present a 1-DOF thermal displacement sensor integrated with an actuated stage, and its experimental characterization. The system was fabricated in the device layer of a silicon-on-\ud insulator (SOI) wafer using a single-mask process.\ud \u

    Single-mask thermal displacement sensor in MEMS

    Get PDF
    In this work we describe a one degree-of-freedom microelectromechanical thermal\ud displacement sensor integrated with an actuated stage. The system was fabricated in the device layer of a silicon-on-insulator wafer using a single-mask process. The sensor is based on the temperature dependent electrical resistivity of silicon and the heat transfer by conduction through a thin layer of air. On a measurement range of 50 ÎĽm and using a measurement bandwidth of 30 Hz, the 1-sigma noise corresponds to 3.47 nm. The power consumption of the sensor is 209 mW, almost completely independent of stage position. The drift of the sensor over a measurement period of 32 hours was 32 nm

    Design and optimization of a 3-DOF planar MEMS stage with integrated thermal position sensors

    Get PDF
    This work presents the design and optimization of a large stroke planar positioning stage in a single-mask MEMS fabrication process. Electrostatic comb-drive actuators were used to control the position and rotation of the 3-DOF stage. Thermal displacement sensors are integrated to provide feedback. Simulations show that we are able to reach a +/-120mm range of motion and +/-30 degrees of rotation. Preliminary measurements were performed which validated our models

    A single-mask thermal displacement sensor in MEMS

    Get PDF
    This work presents a MEMS displacement sensor based on the conductive heat transfer of a resistively heated silicon structure towards an actuated stage parallel to the structure. This differential sensor can be easily incorporated into a silicon-on-insulator-based process, and fabricated within the same mask as electrostatic actuators and flexure-based stages. We discuss a lumped capacitance model to optimize the sensor sensitivity as a function of the doping concentration, the operating temperature, the heater length and width. We demonstrate various sensor designs. The typical sensor resolution is 2 nm within a bandwidth of 25 Hz at a full scale range of 110 ÎĽm

    Micromachined two dimensional resistor arrays for determination of gas parameters

    Get PDF
    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of measuring temperature distributions are the inherent compensation of heat losses to the support and the insensitivity to variations in the temperature coefficient of resistance
    • …
    corecore