14 research outputs found

    Libertad y dignidad de la persona humana

    Get PDF

    Black holes, cosmological singularities and change of signature

    Get PDF
    There exists a widespread belief that signature type change could be used to avoid spacetime singularities. We show that signature change cannot be utilised to this end unless the Einstein equation is abandoned at the suface of signature type change. We also discuss how to solve the initial value problem and show to which extent smooth and discontinuous signature changing solutions are equivalent.Comment: 14pages, Latex, no figur

    Cosmological perturbations and classical change of signature

    Get PDF
    Cosmological perturbations on a manifold admitting signature change are studied. The background solution consists in a Friedmann-Lemaitre-Robertson- Walker (FLRW) Universe filled by a constant scalar field playing the role of a cosmological constant. It is shown that no regular solution exist satisfying the junction conditions at the surface of change. The comparison with similar studies in quantum cosmology is made.Comment: 35 pages, latex, 2 figures available at [email protected], to appear in Physical Review

    Actions for signature change

    Get PDF
    This is a contribution on the controversy about junction conditions for classical signature change. The central issue in this debate is whether the extrinsic curvature on slices near the hypersurface of signature change has to be continuous ({\it weak} signature change) or to vanish ({\it strong} signature change). Led by a Lagrangian point of view, we write down eight candidate action functionals S1S_1,\dots S8S_8 as possible generalizations of general relativity and investigate to what extent each of these defines a sensible variational problem, and which junction condition is implied. Four of the actions involve an integration over the total manifold. A particular subtlety arises from the precise definition of the Einstein-Hilbert Lagrangian density g1/2R[g]|g|^{1/2} R[g]. The other four actions are constructed as sums of integrals over singe-signature domains. The result is that {\it both} types of junction conditions occur in different models, i.e. are based on different first principles, none of which can be claimed to represent the ''correct'' one, unless physical predictions are taken into account. From a point of view of naturality dictated by the variational formalism, {\it weak} signature change is slightly favoured over {\it strong} one, because it requires less {\it \`a priori} restrictions for the class of off-shell metrics. In addition, a proposal for the use of the Lagrangian framework in cosmology is made.Comment: 36 pages, LaTeX, no figures; some corrections have been made, several Comments and further references are included and a note has been added

    Libertad y dignidad de la persona humana

    No full text
    corecore