89 research outputs found

    Intra- and interspecific polymorphisms ofLeishmania donovani andL. tropica minicircle DNA

    Get PDF
    A pair of degenerate polymerase chain reaction (PCR) primers (LEI-1, TCG GAT CC[C,T] [G,C]TG GGT AGG GGC GT; LEI-2, ACG GAT CC[G,C] [G,C][A,C]C TAT [A,T]TT ACA CC) defining a 0.15-kb segment ofLeishmania minicircle DNA was constructed. These primers amplified not only inter- but also intraspecifically polymorphic sequences. Individual sequences revealed a higher intraspecific than interspecific divergence. It is concluded that individual sequences are of limited relevance for species determination. In contrast, when a data base of 19 different sequences was analyzed in a dendrographic plot, an accurate species differentiation was feasible

    Leishmania isoenzyme polymorphisms in Ecuador: Relationships with geographic distribution and clinical presentation

    Get PDF
    Background: Determinants of the clinical presentation of the leishmaniases are poorly understood but Leishmania species and strain differences are important. To examine the relationship between clinical presentation, species and isoenzyme polymorphisms, 56 Leishmania isolates from distinct presentations of American tegumentary leishmaniasis (ATL) from Ecuador were analyzed. Methods: Isolates were characterized by multilocus enzyme electrophoresis for polymorphisms of 11 isoenzymes. Patients were infected in four different ecologic regions: highland and lowland jungle of the Pacific coast, Amazonian lowlands and Andean highlands. Results: Six Leishmania species constituting 21 zymodemes were identified: L. (Viannia) panamensis (21 isolates, 7 zymodemes), L. (V.) guyanensis (7 isolates, 4 zymodemes), L. (V.) braziliensis (5 isolates, 3 zymodemes), L. (Leishmania) mexicana (11 isolates, 4 zymodemes), L. (L.) amazonensis (10 isolates, 2 zymodemes) and L. (L.) major (2 isolates, 1 zymodeme). L. panamensis was the species most frequently identified in the Pacific region and was associated with several clinical variants of cutaneous disease (CL); eight cases of leishmaniasis recidiva cutis (LRC) found in the Pacific highlands were associated with 3 zymodemes of this species. Mucocutaneous leishmaniasis found only in the Amazonian focus was associated with 3 zymodemes of L. braziliensis. The papular variant of CL, Uta, found in the Andean highlands was related predominantly with a single zymodeme of L. mexicana. Conclusion: Our data show a high degree of phenotypic variation within species, and some evidence for associations between specific variants of ATL (i.e. Uta and LRC) and specific Leishmania zymodemes. This study further defines the geographic distribution of Leishmania species and clinical variants of ATL in Ecuador

    A One Base Pair Deletion in the Canine ATP13A2 Gene Causes Exon Skipping and Late-Onset Neuronal Ceroid Lipofuscinosis in the Tibetan Terrier

    Get PDF
    Neuronal ceroid lipofuscinosis (NCL) is a progressive neurodegenerative disease characterized by brain and retinal atrophy and the intracellular accumulation of autofluorescent lysosomal storage bodies resembling lipofuscin in neurons and other cells. Tibetan terriers show a late-onset lethal form of NCL manifesting first visible signs at 5–7 years of age. Genome-wide association analyses for 12 Tibetan-terrier-NCL-cases and 7 Tibetan-terrier controls using the 127K canine Affymetrix SNP chip and mixed model analysis mapped NCL to dog chromosome (CFA) 2 at 83.71–84.72 Mb. Multipoint linkage and association analyses in 376 Tibetan terriers confirmed this genomic region on CFA2. A mutation analysis for 14 positional candidate genes in two NCL-cases and one control revealed a strongly associated single nucleotide polymorphism (SNP) in the MAPK PM20/PM21 gene and a perfectly with NCL associated single base pair deletion (c.1620delG) within exon 16 of the ATP13A2 gene. The c.1620delG mutation in ATP13A2 causes skipping of exon 16 presumably due to a broken exonic splicing enhancer motif. As a result of this mutation, ATP13A2 lacks 69 amino acids. All known 24 NCL cases were homozygous for this deletion and all obligate 35 NCL-carriers were heterozygous. In a sample of 144 dogs from eleven other breeds, the c.1620delG mutation could not be found. Knowledge of the causative mutation for late-onset NCL in Tibetan terrier allows genetic testing of these dogs to avoid matings of carrier animals. ATP13A2 mutations have been described in familial Parkinson syndrome (PARK9). Tibetan terriers with these mutations provide a valuable model for a PARK9-linked disease and possibly for manganese toxicity in synucleinopathies

    Molecular Characterization of Leishmania Species Isolated from Cutaneous Leishmaniasis in Yemen

    Get PDF
    Background: Cutaneous leishmaniasis (CL) is a neglected tropical disease endemic in the tropics and subtropics with a global yearly incidence of 1.5 million. Although CL is the most common form of leishmaniasis, which is responsible for 60% of DALYs lost due to tropical-cluster diseases prevalent in Yemen, available information is very limited. Methodology/Principal Findings: This study was conducted to determine the molecular characterization of Leishmania species isolated from human cutaneous lesions in Yemen. Dermal scrapes were collected and examined for Leishmania amastigotes using the Giemsa staining technique. Amplification of the ribosomal internal transcribed spacer 1(ITS-1) gene was carried out using nested PCR and subsequent sequencing. The sequences from Leishmania isolates were subjected to phylogenetic analysis using the neighbor-joining and maximum parsimony methods. The trees identified Leishmania tropica from 16 isolates which were represented by two sequence types. Conclusions/Significance: The predominance of the anthroponotic species (i.e. L. tropica) indicates the probability of anthroponotic transmission of cutaneous leishmaniasis in Yemen. These findings will help public health authorities to build an effective control strategy taking into consideration person–to-person transmission as the main dynamic of transmissio

    DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mosquitoes belonging to the Albitarsis Group (<it>Anopheles</it>: <it>Nyssorhynchus</it>) are of importance as malaria vectors across the Neotropics. The Group currently comprises six known species, and recent studies have indicated further hidden biodiversity within the Group. DNA barcoding has been proposed as a highly useful tool for species recognition, although its discriminatory utility has not been verified in closely related taxa across a wide geographic distribution.</p> <p>Methods</p> <p>DNA barcodes (658 bp of the mtDNA <it>Cytochrome c Oxidase </it>- <it>COI</it>) were generated for 565 <it>An. albitarsis </it>s.l. collected in Argentina, Brazil, Colombia, Paraguay, Trinidad and Venezuela over the past twenty years, including specimens from type series and type localities. Here we test the utility of currently advocated barcoding methodologies, including the Kimura-two-parameter distance model (K2P) and Neighbor-joining analysis (NJ), for determining species delineation within mosquitoes of the Neotropical Albitarsis Group of malaria vectors (<it>Anopheles</it>: <it>Nyssorhynchus</it>), and compare results with Bayesian analysis.</p> <p>Results</p> <p>Species delineation through barcoding analysis and Bayesian phylogenetic analysis, fully concur. Analysis of 565 sequences (302 unique haplotypes) resolved nine NJ tree clusters, with less than 2% intra-node variation. Mean intra-specific variation (K2P) was 0.009 (range 0.002 - 0.014), whereas mean inter-specific divergence were several-fold higher at 0.041 (0.020 - 0.056), supporting the reported "barcoding gap". These results show full support for separate species status of the six known species in the Albitarsis Group (<it>An. albitarsis </it>s.s., <it>An. albitarsis </it>F, <it>An. deaneorum</it>, <it>An. janconnae</it>, <it>An. marajoara </it>and <it>An. oryzalimnetes</it>), and also support species level status for two previously detected lineages - <it>An. albitarsis </it>G &<it>An. albitarsis </it>I (designated herein). In addition, we highlight the presence of a unique mitochondrial lineage close to <it>An. deaneorum </it>and <it>An. marajoara </it>(<it>An. albitarsis </it>H) from Rondônia and Mato Grosso in southwestern Brazil. Further integrated studies are required to confirm the status of this lineage.</p> <p>Conclusions</p> <p>DNA barcoding provides a reliable means of identifying both known and undiscovered biodiversity within the closely related taxa of the Albitarsis Group. We advocate its usage in future studies to elucidate the vector competence and respective distributions of all eight species in the Albitarsis Group and the novel mitochondrial lineage (<it>An. albitarsis </it>H) recovered in this study.</p

    Biological variation in Anopheles darlingi root

    Full text link
    Behavioural variation in the South American malaria vector Anopheles darlingi is described. At the centre of its distribution, in forest areas close to the city of Manaus, Brazil, it is primarily exophagic and exophilic. Mosquitoes from this area are chromosomally diverse. Towards the northern edge of its distribution (in Guyana and Venezuela) it is more endophagic and less diverse chromosomally. Similarly in the south (in the state of Minas Gerais) it is less polymorphic. In this area, however, it is primarily zoophilic and exophagic. Evidence is presented that female wing size may vary between populations. The possibility that this widely distributed species may be a complex could have important implications for future malaria control schemes
    corecore