24 research outputs found
HIV-1 RT-dependent DNAzyme expression inhibits HIV-1 replication without the emergence of escape viruses
DNAzymes are easier to prepare and less sensitive to chemical and enzymatic degradation than ribozymes; however, a DNA enzyme expression system has not yet been developed. In this study, we exploited the mechanism of HIV-1 reverse transcription (RT) in a DNA enzyme expression system. We constructed HIV-1 RT-dependent lentiviral DNAzyme expression vectors including the HIV-1 primer binding site, the DNA enzyme, and either a native tRNA (Lys-3), tRMDtRL, or one of two truncated tRNAs (Lys-3), tRMDΔARMtRL or tRMD3′-endtRL. Lentiviral vector-mediated DNAzyme expression showed high levels of inhibition of HIV-1 replication in SupT1 cells. We also demonstrated the usefulness of this approach in a long-term assay, in which we found that the DNAzymes prevented escape from inhibition of HIV. These results suggest that HIV-1 RT-dependent lentiviral vector-derived DNAzymes prevent the emergence of escape mutations
Comparing Artificial Neural Networks, General Linear Models and Support Vector Machines in Building Predictive Models for Small Interfering RNAs
Exogenous short interfering RNAs (siRNAs) induce a gene knockdown effect in cells by interacting with naturally occurring RNA processing machinery. However not all siRNAs induce this effect equally. Several heterogeneous kinds of machine learning techniques and feature sets have been applied to modeling siRNAs and their abilities to induce knockdown. There is some growing agreement to which techniques produce maximally predictive models and yet there is little consensus for methods to compare among predictive models. Also, there are few comparative studies that address what the effect of choosing learning technique, feature set or cross validation approach has on finding and discriminating among predictive models.Three learning techniques were used to develop predictive models for effective siRNA sequences including Artificial Neural Networks (ANNs), General Linear Models (GLMs) and Support Vector Machines (SVMs). Five feature mapping methods were also used to generate models of siRNA activities. The 2 factors of learning technique and feature mapping were evaluated by complete 3x5 factorial ANOVA. Overall, both learning techniques and feature mapping contributed significantly to the observed variance in predictive models, but to differing degrees for precision and accuracy as well as across different kinds and levels of model cross-validation.The methods presented here provide a robust statistical framework to compare among models developed under distinct learning techniques and feature sets for siRNAs. Further comparisons among current or future modeling approaches should apply these or other suitable statistically equivalent methods to critically evaluate the performance of proposed models. ANN and GLM techniques tend to be more sensitive to the inclusion of noisy features, but the SVM technique is more robust under large numbers of features for measures of model precision and accuracy. Features found to result in maximally predictive models are not consistent across learning techniques, suggesting care should be taken in the interpretation of feature relevance. In the models developed here, there are statistically differentiable combinations of learning techniques and feature mapping methods where the SVM technique under a specific combination of features significantly outperforms all the best combinations of features within the ANN and GLM techniques
Small RNA interference-mediated gene silencing of heparanase abolishes the invasion, metastasis and angiogenesis of gastric cancer cells
<p>Abstract</p> <p>Background</p> <p>Heparanase facilitates the invasion and metastasis of cancer cells, and is over-expressed in many kinds of malignancies. Our studies indicated that heparanase was frequently expressed in advanced gastric cancers. The aim of this study is to determine whether silencing of heparanase expression can abolish the malignant characteristics of gastric cancer cells.</p> <p>Methods</p> <p>Three heparanase-specific small interfering RNA (siRNAs) were designed, synthesized, and transfected into cultured gastric cancer cell line SGC-7901. Heparanase expression was measured by RT-PCR, real-time quantitative PCR and Western blot. Cell proliferation was detected by MTT colorimetry and colony formation assay. The <it>in vitro </it>invasion and metastasis of cancer cells were measured by cell adhesion assay, scratch assay and matrigel invasion assay. The angiogenesis capabilities of cancer cells were measured by tube formation of endothelial cells.</p> <p>Results</p> <p>Transfection of siRNA against 1496-1514 bp of encoding regions resulted in reduced expression of heparanase, which started at 24 hrs and lasted for 120 hrs post-transfection. The siRNA-mediated silencing of heparanase suppressed the cellular proliferation of SGC-7901 cells. In addition, the <it>in vitro </it>invasion and metastasis of cancer cells were attenuated after knock-down of heparanase. Moreover, transfection of heparanase-specific siRNA attenuated the <it>in vitro </it>angiogenesis of cancer cells in a dose-dependent manner.</p> <p>Conclusions</p> <p>These results demonstrated that gene silencing of heparanase can efficiently abolish the proliferation, invasion, metastasis and angiogenesis of human gastric cancer cells <it>in vitro</it>, suggesting that heparanase-specific siRNA is of potential values as a novel therapeutic agent for human gastric cancer.</p
Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features
<p>Abstract</p> <p>Background</p> <p>RNA interference (RNAi) is a naturally occurring phenomenon that results in the suppression of a target RNA sequence utilizing a variety of possible methods and pathways. To dissect the factors that result in effective siRNA sequences a regression kernel Support Vector Machine (SVM) approach was used to quantitatively model RNA interference activities.</p> <p>Results</p> <p>Eight overall feature mapping methods were compared in their abilities to build SVM regression models that predict published siRNA activities. The primary factors in predictive SVM models are position specific nucleotide compositions. The secondary factors are position independent sequence motifs (<it>N</it>-grams) and guide strand to passenger strand sequence thermodynamics. Finally, the factors that are least contributory but are still predictive of efficacy are measures of intramolecular guide strand secondary structure and target strand secondary structure. Of these, the site of the 5' most base of the guide strand is the most informative.</p> <p>Conclusion</p> <p>The capacity of specific feature mapping methods and their ability to build predictive models of RNAi activity suggests a relative biological importance of these features. Some feature mapping methods are more informative in building predictive models and overall <it>t</it>-test filtering provides a method to remove some noisy features or make comparisons among datasets. Together, these features can yield predictive SVM regression models with increased predictive accuracy between predicted and observed activities both within datasets by cross validation, and between independently collected RNAi activity datasets. Feature filtering to remove features should be approached carefully in that it is possible to reduce feature set size without substantially reducing predictive models, but the features retained in the candidate models become increasingly distinct. Software to perform feature prediction and SVM training and testing on nucleic acid sequences can be found at the following site: <url>ftp://scitoolsftp.idtdna.com/SEQ2SVM/</url>.</p