3 research outputs found

    Canonical Expansion of PT-Symmetric Operators and Perturbation Theory

    Full text link
    Let HH be any \PT symmetric Schr\"odinger operator of the type 2Δ+(x12+...+xd2)+igW(x1,...,xd) -\hbar^2\Delta+(x_1^2+...+x_d^2)+igW(x_1,...,x_d) on L2(Rd)L^2(\R^d), where WW is any odd homogeneous polynomial and gRg\in\R. It is proved that H\P H is self-adjoint and that its eigenvalues coincide (up to a sign) with the singular values of HH, i.e. the eigenvalues of HH\sqrt{H^\ast H}. Moreover we explicitly construct the canonical expansion of HH and determine the singular values μj\mu_j of HH through the Borel summability of their divergent perturbation theory. The singular values yield estimates of the location of the eigenvalues \l_j of HH by Weyl's inequalities.Comment: 20 page

    PTPT symmetric non-selfadjoint operators, diagonalizable and non-diagonalizable, with real discrete spectrum

    Full text link
    Consider in L2(Rd)L^2(R^d), d1d\geq 1, the operator family H(g):=H0+igWH(g):=H_0+igW. \ds H_0= a^\ast_1a_1+... +a^\ast_da_d+d/2 is the quantum harmonic oscillator with rational frequencies, WW a PP symmetric bounded potential, and gg a real coupling constant. We show that if g<ρ|g|<\rho, ρ\rho being an explicitly determined constant, the spectrum of H(g)H(g) is real and discrete. Moreover we show that the operator \ds H(g)=a^\ast_1 a_1+a^\ast_2a_2+ig a^\ast_2a_1 has real discrete spectrum but is not diagonalizable.Comment: 20 page
    corecore