127 research outputs found

    Brauer groups and quotient stacks

    Full text link
    A natural question is to determine which algebraic stacks are qoutient stacks. In this paper we give some partial answers and relate it to the old question of whether, for a scheme X, the natural map from the Brauer goup (equivalence classes of Azumaya algebras) to the cohomological Brauer group (the torsion subgroup of H2(X,Gm)H^2(X,{\mathbb G}_m) is surjective.Comment: American J. Math, to appear. (Latex2e, 17pp

    On the geometry of Deligne-Mumford stacks

    Full text link
    General structure results about Deligne–Mumford stacks are summarized, applicable to stacks of finite type over a field. When the base field has characteristic 0, a class of “(quasi-)projective” Deligne–Mumford stacks is identified, defined to be those that embed as a (locally) closed substack of a smooth proper Deligne–Mumford stack having projective coarse moduli space. These conditions are shown to be equivalent to some well-studied hypotheses

    Quantum Pieri rules for isotropic Grassmannians

    Full text link
    We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations.Comment: 59 pages, LaTeX, 6 figure

    Adiabatic Electron-Phonon Interaction and High-Temperature Thermodynamics of A15 Compounds

    Get PDF
    Inelastic neutron scattering was used to measure the phonon densities of states of the A15 compounds V_3Si, V_3Ge, and V_3Co at temperatures from 10 to 1273 K. It was found that phonons in V_3Si and V_3Ge, which are superconducting at low temperatures, exhibit an anomalous stiffening with increasing temperature, whereas phonons in V_3Co have a normal softening behavior. First-principles calculations show that this anomalous increase in phonon frequencies at high temperatures originates with an adiabatic electron-phonon coupling mechanism. The anomaly is caused by the thermally induced broadening of sharp peaks in the electronic density of states of V_3Si and V_3Ge, which tends to decrease the electronic density at the Fermi level. These results show that the adiabatic electron-phonon coupling can influence the phonon thermodynamics at temperatures exceeding 1000 K

    Electron-phonon interactions and high-temperature thermodynamics of vanadium and its alloys

    Get PDF
    Inelastic neutron scattering was used to measure the phonon densities of states (DOSs) for pure V and solid solutions of V with 6 to 7at% of Co, Nb, and Pt, at temperatures from 10 K to 1323 K. Ancillary measurements of heat capacity and thermal expansion are reported on V and V-7at%Co and used to help identify the different sources of entropy. Pure V exhibits an anomalous anharmonic stiffening of phonons with increasing temperature. This anharmonicity is suppressed by Co and Pt, but not by isoelectronic Nb solutes. The changes in phonon frequency with alloying and with temperature both correlate to the decrease in electron density of states (DOS) at the Fermi level as calculated using density functional theory. The effects of both temperature and alloying can be understood in terms of an adiabatic electron-phonon interaction (EPI), which broadens sharp features in the electron DOS. These results show that the adiabatic EPI can influence the phonon thermodynamics at temperatures exceeding 1000 K, and that thermal trends of phonons may help assess the strength of the EPI

    There is no degree map for 0-cycles on Artin stacks

    Full text link
    We show that there is no way to define degrees of 0-cycles on Artin stacks with proper good moduli spaces so that (i) the degree of an ordinary point is non-zero, and (ii) degrees are compatible with closed immersions.Comment: 3 page

    Stable Grothendieck polynomials and K-theoretic factor sequences

    Full text link
    We formulate a nonrecursive combinatorial rule for the expansion of the stable Grothendieck polynomials of [Fomin-Kirillov '94] in the basis of stable Grothendieck polynomials for partitions. This gives a common generalization, as well as new proofs of the rule of [Fomin-Greene '98] for the expansion of the stable Schubert polynomials into Schur polynomials, and the K-theoretic Grassmannian Littlewood-Richardson rule of [Buch '02]. The proof is based on a generalization of the Robinson-Schensted and Edelman-Greene insertion algorithms. Our results are applied to prove a number of new formulas and properties for K-theoretic quiver polynomials, and the Grothendieck polynomials of [Lascoux-Schutzenberger '82]. In particular, we provide the first KK-theoretic analogue of the factor sequence formula of [Buch-Fulton '99] for the cohomological quiver polynomials

    Phonon Density of States of LaFeAsO1-xFx

    Get PDF
    We have studied the phonon density of states (PDOS) in LaFeAsO1-xFx with inelastic neutron scattering methods. The PDOS of the parent compound(x=0) is very similar to the PDOS of samples optimally doped with fluorine to achieve the maximum Tc (x~0.1). Good agreement is found between the experimental PDOS and first-principle calculations with the exception of a small difference in Fe mode frequencies. The PDOS reported here is not consistent with conventional electron-phonon mediated superconductivity

    Nonharmonic phonons in α-iron at high temperatures

    Get PDF
    Phonon densities of states (DOS) of bcc α−^(57)Fe were measured from room temperature through the 1044 K Curie transition and the 1185 K fcc γ-Fe phase transition using nuclear resonant inelastic x-ray scattering. At higher temperatures all phonons shift to lower energies (soften) with thermal expansion, but the low transverse modes soften especially rapidly above 700 K, showing strongly nonharmonic behavior that persists through the magnetic transition. Interatomic force constants for the bcc phase were obtained by iteratively fitting a Born–von Kármán model to the experimental phonon spectra using a genetic algorithm optimization. The second-nearest-neighbor fitted axial force constants weakened significantly at elevated temperatures. An unusually large nonharmonic behavior is reported, which increases the vibrational entropy and accounts for a contribution of 35 meV/atom in the free energy at high temperatures. The nonharmonic contribution to the vibrational entropy follows the thermal trend of the magnetic entropy, and may be coupled to magnetic excitations. A small change in vibrational entropy across the α−γ structural phase transformation is also reported
    corecore