324 research outputs found
Macht
Was ist Macht? Hat der Mensch „von Natur aus“ das Bedürfnis, nach Macht zu streben? Ist Macht „schlecht“, weil sie Machtmissbrauch ermöglicht? Wieviele Aspekte das Thema Macht wirklich hat und ob Macht beispielsweise auch etwas mit Gewalt zu tun hat, erfährt man im vorliegenden Dossier
The immunopathology of thymic GVHD
The clinical success of allogeneic hematopoietic stem cell transplantation (HSCT) depends on the appropriate reconstitution of the host's immune system. While recovery of T-cell immunity may occur in transplant recipients via both thymus-dependent and thymus-independent pathways, the regeneration of a population of phenotypically naive T cells with a broad receptor repertoire relies entirely on the de novo generation of T-cells in the thymus. Preclinical models and clinical studies of allogeneic HSCT have identified the thymus as a target of graft-versus-host disease (GVHD), thus limiting T-cell regeneration. The present review focuses on recent insight into how GVHD affects thymic structure and function and how this knowledge may aid in the design of new strategies to improve T-cell reconstitution following allogeneic HSC
Einstein und Philosophie?
Albert Einstein ist für seine Arbeiten in der Physik weltberühmt. Nur wenige wissen jedoch, dass Einstein selbst auch philosophische Arbeiten publiziert hat und seine Erkenntnisse weitreichende Folgen für die Philosophie haben. Oder haben „Raum“ und „Zeit“ nichts mit Wissen zu tun
Virus-Like Particles Are Efficient Tools for Boosting mRNA-Induced Antibodies.
mRNA based vaccines against COVID-19 have proven most successful at keeping SARS-CoV-2 pandemic at bay in many countries. Recently, there is an increased interest in heterologous prime-boost vaccination strategies for COVID-19 to maintain antibody responses for the control of continuously emerging SARS-CoV-2 variants of concern (VoCs) and to overcome other obstacles such as supply shortage, costs and reduced safety issues or inadequatly induced immune-responses. In this study, we investigated the antibody responses induced by heterologous prime-boost with vaccines based on mRNA and virus-like particles (VLPs). The VLP-based mCuMVTT-RBM vaccine candidate and the approved mRNA-1273 vaccine were used for this purpose. We find that homologous prime boost regimens with either mRNA or VLP induced high levels of high avidity antibodies. Optimal antibody responses were, however, induced by heterologous regimens both for priming with mRNA and boosting with VLP and vice versa, priming with VLP and boosting with mRNA. Thus, heterologous prime boost strategies may be able to optimize efficacy and economics of novel vaccine strategies
Adjoint bi-continuous semigroups and semigroups on the space of measures
For a given bi-continuous semigroup T on a Banach space X we define its
adjoint on an appropriate closed subspace X^o of the norm dual X'. Under some
abstract conditions this adjoint semigroup is again bi-continuous with respect
to the weak topology (X^o,X). An application is the following: For K a Polish
space we consider operator semigroups on the space C(K) of bounded, continuous
functions (endowed with the compact-open topology) and on the space M(K) of
bounded Baire measures (endowed with the weak*-topology). We show that
bi-continuous semigroups on M(K) are precisely those that are adjoints of a
bi-continuous semigroups on C(K). We also prove that the class of bi-continuous
semigroups on C(K) with respect to the compact-open topology coincides with the
class of equicontinuous semigroups with respect to the strict topology. In
general, if K is not Polish space this is not the case
Influence of antigen density and TLR ligands on preclinical efficacy of a VLP-based vaccine against peanut allergy.
BACKGROUND
Virus-like particle (VLP) Peanut is a novel immunotherapeutic vaccine candidate for the treatment of peanut allergy. The active pharmaceutical ingredient represents cucumber mosaic VLPs (CuMVTT -VLPs) that are genetically fused with one of the major peanut allergens, Ara h 2 (CuMVTT -Ara h 2). We previously demonstrated the immunogenicity and the protective capacity of VLP Peanut-based immunization in a murine model for peanut allergy. Moreover, a Phase I clinical trial has been initiated using VLP Peanut material manufactured following a GMP-compliant manufacturing process. Key product characterization studies were undertaken here to understand the role and contribution of critical quality attributes that translate as predictive markers of immunogenicity and protective efficacy for clinical vaccine development.
METHOD
The role of prokaryotic RNA encapsulated within VLP Peanut on vaccine immunogenicity was assessed by producing a VLP Peanut batch with a reduced RNA content (VLP Peanut low RNA). Immunogenicity and peanut allergen challenge studies were conducted with VLP Peanut low RNA, as well as with VLP Peanut in WT and TLR 7 KO mice. Furthermore, mass spectrometry and SDS-PAGE based methods were used to determine Ara h 2 antigen density on the surface of VLP Peanut particles. This methodology was subsequently applied to investigate the relationship between Ara h 2 antigen density and immunogenicity of VLP Peanut.
RESULTS
A TLR 7 dependent formation of Ara h 2 specific high-avidity IgG antibodies, as well as a TLR 7 dependent change in the dominant IgG subclass, was observed following VLP Peanut vaccination, while total allergen-specific IgG remained relatively unaffected. Consistently, a missing TLR 7 signal caused only a weak decrease in allergen tolerability after vaccination. In contrast, a reduced RNA content for VLP Peanut resulted in diminished total Ara h 2 specific IgG responses, followed by a significant impairment in peanut allergen tolerability. The discrepant effect on allergen tolerance caused by an absent TLR 7 signal versus a reduced RNA content is explained by the observation that VLP Peanut-derived RNA not only stimulates TLR 7 but also TLR 3. Additionally, a strong correlation was observed between the number of Ara h 2 antigens displayed on the surface of VLP Peanut particles and the vaccine's immunogenicity and protective capacity.
CONCLUSIONS
Our findings demonstrate that prokaryotic RNA encapsulated within VLP Peanut, including antigen density of Ara h 2 on viral particles, are key contributors to the immunogenicity and protective capacity of the vaccine. Thus, antigenicity and RNA content are two critical quality attributes that need to be determined at the stage of manufacturing, providing robust information regarding the immunogenicity and protective capacity of VLP Peanut in the mouse which has translational relevance to the human setting
The next generation virus‐like particle platform for the treatment of peanut allergy
Background: Allergy to peanut is one of the leading causes of anaphylactic reactions among food allergic patients. Immunization against peanut allergy with a safe and protective vaccine holds a promise to induce durable protection against anaphylaxis caused by exposure to peanut. A novel vaccine candidate (VLP Peanut), based on virus‐like particles (VLPs), is described here for the treatment of peanut allergy.
Methods and Results: VLP Peanut consists of two proteins: a capsid subunit derived from Cucumber mosaic virus engineered with a universal T‐cell epitope (CuMV) and a CuMV subunit fused with peanut allergen Ara h 2 (CuMV‐Ara h 2), forming mosaic VLPs. Immunizations with VLP Peanut in both naïve and peanut‐sensitized mice resulted in a significant anti‐Ara h 2 IgG response. Local and systemic protection induced by VLP Peanut were established in mouse models for peanut allergy following prophylactic, therapeutic, and passive immunizations. Inhibition of FcγRIIb function resulted in a loss of protection, confirming the crucial role of the receptor in conferring cross protection against peanut allergens other than Ara h 2.
Conclusion: VLP Peanut can be delivered to peanut‐sensitized mice without triggering allergic reactions, while remaining highly immunogenic and offering protection against all peanut allergens. In addition, vaccination ablates allergic symptoms upon allergen challenge. Moreover, the prophylactic immunization setting conferred the protection against subsequent peanut‐induced anaphylaxis, showing the potential for preventive vaccination. This highlights the effectiveness of VLP Peanut as a prospective break‐through immunotherapy vaccine candidate toward peanut allergy. VLP Peanut has now entered clinical development with the study PROTECT
The next generation virus-like particle platform for the treatment of peanut allergy.
BACKGROUND
Allergy to peanut is one of the leading causes of anaphylactic reactions among food allergic patients. Immunization against peanut allergy with a safe and protective vaccine holds a promise to induce durable protection against anaphylaxis caused by exposure to peanut. A novel vaccine candidate (VLP Peanut), based on virus-like particles (VLPs), is described here for the treatment of peanut allergy.
METHODS AND RESULTS
VLP Peanut consist of two proteins: a capsid subunit derived from Cucumber mosaic virus engineered with a universal T cell epitope (CuMVTT ) and a CuMVTT subunit fused with peanut allergen Ara h 2 (CuMVTT -Ara h 2), forming mosaic VLPs. Immunizations with VLP Peanut in both naïve and peanut-sensitised mice resulted in a significant anti-Ara h 2 IgG response. Local and systemic protection induced by VLP Peanut were established in mouse models for peanut allergy following prophylactic, therapeutic and passive immunizations. Inhibition of FcγRIIb function resulted in a loss of protection, confirming the crucial role of the receptor in conferring cross protection against peanut allergens other than Ara h 2.
CONCLUSION
VLP Peanut can be delivered to peanut-sensitized mice without triggering allergic reactions, whilst remaining highly immunogenic and offering protection against all peanut allergens. In addition, vaccination ablates allergic symptoms upon allergen challenge. Moreover, the prophylactic immunization setting conferred the protection against subsequent peanut-induced anaphylaxis, showing the potential for preventive vaccination. This highlights the effectiveness of VLP Peanut as a prospective break-through immunotherapy vaccine candidate towards peanut allergy. VLP Peanut has now entered clinical development with the study PROTECT
- …