31 research outputs found

    Kombucha multimicrobial community under simulated spaceflight and martian conditions

    Get PDF
    Kombucha microbial community (KMC) produces a cellulose-based biopolymer of industrial importance and a probiotic beverage. KMC-derived cellulose-based pellicle film is known as a highly adaptive microbial macrocolony - a stratified community of prokaryotes and eukaryotes. In the framework of the multipurpose international astrobiological project "BIOlogy and Mars Experiment (BIOMEX)," which aims to study the vitality of prokaryotic and eukaryotic organisms and the stability of selected biomarkers in low Earth orbit and in a Mars-like environment, a cellulose polymer structural integrity will be assessed as a biomarker and biotechnological nanomaterial. In a preflight assessment program for BIOMEX, the mineralized bacterial cellulose did not exhibit significant changes in the structure under all types of tests. KMC members that inhabit the cellulose-based pellicle exhibited a high survival rate; however, the survival capacity depended on a variety of stressors such as the vacuum of space, a Mars-like atmosphere, UVC radiation, and temperature fluctuations. The critical limiting factor for microbial survival was high-dose UV irradiation. In the tests that simulated a 1-year mission of exposure outside the International Space Station, the core populations of bacteria and yeasts survived and provided protection against UV; however, the microbial density of the populations overall was reduced, which was revealed by implementation of culture-dependent and culture-independent methods. Reduction of microbial richness was also associated with a lower accumulation of chemical elements in the cellulose-based pellicle film, produced by microbiota that survived in the post-test experiments, as compared to untreated cultures that populated the film.This study was supported by National Academy of Sciences of Ukraine (grant 47/2012-15). The pre-flight programs EVTs and SVTs for the EXPOSE-R2 mission were supported by the European Space Agency.http://www.liebertpub.com/overview/astrobiology/992018-05-30hj2017Biochemistr

    Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications

    Get PDF
    Epigenetic changes in long interspersed nuclear element-1s (LINE-1s or L1s) occur early during the process of carcinogenesis. A lower methylation level (hypomethylation) of LINE-1 is common in most cancers, and the methylation level is further decreased in more advanced cancers. Consequently, several previous studies have suggested the use of LINE-1 hypomethylation levels in cancer screening, risk assessment, tumor staging, and prognostic prediction. Epigenomic changes are complex, and global hypomethylation influences LINE-1s in a generalized fashion. However, the methylation levels of some loci are dependent on their locations. The consequences of LINE-1 hypomethylation are genomic instability and alteration of gene expression. There are several mechanisms that promote both of these consequences in cis. Therefore, the methylation levels of different sets of LINE-1s may represent certain phenotypes. Furthermore, the methylation levels of specific sets of LINE-1s may indicate carcinogenesis-dependent hypomethylation. LINE-1 methylation pattern analysis can classify LINE-1s into one of three classes based on the number of methylated CpG dinucleotides. These classes include hypermethylation, partial methylation, and hypomethylation. The number of partial and hypermethylated loci, but not hypomethylated LINE-1s, is different among normal cell types. Consequently, the number of hypomethylated loci is a more promising marker than methylation level in the detection of cancer DNA. Further genome-wide studies to measure the methylation level of each LINE-1 locus may improve PCR-based methylation analysis to allow for a more specific and sensitive detection of cancer DNA or for an analysis of certain cancer phenotypes

    Additional file 1: of Genome-wide analysis of mRNAs associated with mouse peroxisomes

    No full text
    Normalization of microarray data by invariant gene set. (A) Background-corrected mRNA expression across the technical replicas of the mRNA sample fractions. (B) Background-corrected mRNA expression across the technical replicas of the mRNA sample fractions. (C) Expression of the invariant genes across the technical replicas of the mRNA sample fractions. (D) Gene expression after normalization by the invariant gene set. (PPTX 53 kb

    Additional file 5: of Genome-wide analysis of mRNAs associated with mouse peroxisomes

    No full text
    The integrated list of mRNAs enriched in peroxisomes and proteins detected in peroxisomes by mass spectrometry. (XLS 143 kb
    corecore