8 research outputs found

    Tunable optical nanocavity of iron-garnet with a buried metal layer

    Get PDF
    We report on the fabrication and characterization of a novel magnetophotonic structure designed as iron garnet based magneto-optical nanoresonator cavity constrained by two noble metal mirrors. Since the iron garnet layer requires annealing at high temperatures, the fabrication process can be rather challenging. Special approaches for the protection of metal layers against oxidation and morphological changes along with a special plasma-assisted polishing of the iron garnet layer surface were used to achieve a 10-fold enhancement of the Faraday rotation angle (up to 10.8°=μm) within a special resonance peak of 12 nm (FWHM) linewidth at a wavelength of 772 nm, in the case of a resonator with two silver mirrors. These structures are promising for tunable nanophotonics applications, in particular, they can be used as magneto-optical (MO) metal-insulator-metal waveguides and modulators

    Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect

    Get PDF
    Magneto-optical effects in ferrimagnetic or ferromagnetic materials are usually too weak for potential applications. The transverse magneto-optical Kerr effect (TMOKE) in ferromagnetic films is typically on the order of 0.1%. Here, we demonstrate experimentally the enhancement of TMOKE due to the interaction of particle plasmons in gold nanowires with a photonic waveguide consisting of magneto- optical material, where hybrid waveguide-plasmon polaritons are excited. We achieve a large TMOKE that modulates the transmitted light intensity by 1.5%, accompanied by high transparency of the system. Our concept may lead to novel devices of miniaturized photonic circuits and switches, which are controllable by an external magnetic field

    Tunable optical nanocavity of iron-garnet with a buried metal layer

    Get PDF
    We report on the fabrication and characterization of a novel magnetophotonic structure designed as iron garnet based magneto-optical nanoresonator cavity constrained by two noble metal mirrors. Since the iron garnet layer requires annealing at high temperatures, the fabrication process can be rather challenging. Special approaches for the protection of metal layers against oxidation and morphological changes along with a special plasma-assisted polishing of the iron garnet layer surface were used to achieve a 10-fold enhancement of the Faraday rotation angle (up to 10.8∘/μm) within a special resonance peak of 12 nm (FWHM) linewidth at a wavelength of 772 nm, in the case of a resonator with two silver mirrors. These structures are promising for tunable nanophotonics applications, in particular, they can be used as magneto-optical (MO) metal-insulator-metal waveguides and modulators

    Tunable Optical Nanocavity of Iron-garnet with a Buried Metal Layer

    No full text
    We report on the fabrication and characterization of a novel magnetophotonic structure designed as iron garnet based magneto-optical nanoresonator cavity constrained by two noble metal mirrors. Since the iron garnet layer requires annealing at high temperatures, the fabrication process can be rather challenging. Special approaches for the protection of metal layers against oxidation and morphological changes along with a special plasma-assisted polishing of the iron garnet layer surface were used to achieve a 10-fold enhancement of the Faraday rotation angle (up to 10.8∘/μ^{\circ}/\mum) within a special resonance peak of 12 nm (FWHM) linewidth at a wavelength of 772 nm, in the case of a resonator with two silver mirrors. These structures are promising for tunable nanophotonics applications, in particular, they can be used as magneto-optical (MO) metal-insulator-metal waveguides and modulators

    Characterization of two-threshold behavior of the emission from a GaAs microcavity

    No full text
    We compare two regimes indicative of polariton lasing and photon lasing of a planar GaAs/GaAlAs microcavity with zero detuning between the bare cavity mode and the quantum-well exciton. In particular, we investigate the cavity emission subsequent to nonresonant pulsed excitation. For the ground state emission from the lower energy-momentum dispersion branch we find a two-threshold behavior in the input-output curve where each transition is accompanied by characteristic changes of the in-plane mode dispersion. We demonstrate that the thresholds are unambiguously evidenced in the photon statistics of the emission based on the second-order correlation function. Moreover, the distinct two-threshold behavior is confirmed in the evolution of the emission pulse duration. Our findings show that a comprehensive study of spectral and temporal characteristics of the emission from a semiconductor microcavity can be used to characterize the different emission regimes.</p
    corecore