618 research outputs found

    Thermodynamic Analyses of Fuel Production Via Solar-Driven Ceria-Based Nonstoichiometric Redox Cycling: A Case Study of the Isothermal Membrane Reactor System

    Get PDF
    A thermodynamic model of an isothermal ceria-based membrane reactor system is developed for fuel production via solar-driven simultaneous reduction and oxidation reactions. Inert sweep gas is applied on the reduction side of the membrane. The model is based on conservation of mass, species, and energy along with the Gibbs criterion. The maximum thermodynamic solar-to-fuel efficiencies are determined by simultaneous multivariable optimization of operational parameters. The effects of gas heat recovery and reactor flow configurations are investigated. The results show that maximum efficiencies of 1.3% (3.2%) and 0.73% (2.0%) are attainable for water splitting (carbon dioxide splitting) under counter- and parallel-flow configurations, respectively, at an operating temperature of 1900 K and 95% gas heat recovery effectiveness. In addition, insights on potential efficiency improvement for the membrane reactor system are further suggested. The efficiencies reported are found to be much lower than those reported in literature. We demonstrate that the thermodynamic models reported elsewhere can violate the Gibbs criterion and, as a result, lead to unrealistically high efficiencies. The present work offers enhanced understanding of the counter-flow membrane reactor and provides more accurate upper efficiency limits for membrane reactor systems. © 2019 by ASME.Australian Research Council (Wojciech Lipiński, Future Fellowship, Award No. FT140101213, Funder ID. 10.13039/501100000923). China Scholarship Council (Sha Li, Grant No. [2015] 3022, 201506020092, Funder ID. 10.13039/501100004543)

    The effects of age on skeletal muscle and the phosphocreatine energy system: can creatine supplementation help older adults

    Get PDF
    Creatine supplementation has been found to significantly increase muscle strength and hypertrophy in young adults (≤ 35 yr) particularly when consumed in conjunction with a resistance training regime. Literature examining the efficacy of creatine supplementation in older adults (55-82 yr) suggests creatine to promote muscle strength and hypertrophy to a greater extent than resistance training alone. The following is a review of literature reporting on the effects of creatine supplementation on intramuscular high energy phosphates, skeletal muscle morphology and quality of life in older adults. Results suggest creatine supplementation to be a safe, inexpensive and effective nutritional intervention, particularly when consumed in conjunction with a resistance training regime, for slowing the rate of muscle wasting that is associated with aging. Physicians should strongly consider advising older adults to supplement with creatine and to begin a resistance training regime in an effort to enhance skeletal muscle strength and hypertrophy, resulting in enhanced quality of life

    Creatine supplementation post-exercise does not enhance training-induced adaptations in middle to older aged males

    Get PDF
    PURPOSE: The present study evaluated the effects of creatine monohydrate (CrM) consumption post-exercise on body composition and muscle strength in middle to older males following a 12-week resistance training program. METHODS: In a double-blind, randomized trial, 20 males aged between 55 and 70 years were randomly assigned to consume either CrM-carbohydrate (CHO) [20 g days(−1) CrM + 5 g days(−1) CHO × 7 days, then 0.1 g kg(−1) CrM + 5 g CHO on training days (average dosage of ~8.8 g)] or placebo CHO (20 g days(−1) CHO × 7 days, then 5 g CHO on training days) while participating in a high intensity resistance training program [3 sets × 10 repetitions at 75 % of 1 repetition maximum (1RM)], 3 days weeks(−1) for 12 weeks. Following the initial 7-day “loading” phase, participants were instructed to ingest their supplement within 60 min post-exercise. Body composition and muscle strength measurements, blood collection and vastus lateralis muscle biopsy were completed at 0, 4, 8 and 12 weeks of the supplement and resistance training program. RESULTS: A significant time effect was observed for 1RM bench press (p = 0.016), leg press (p = 0.012), body mass (p = 0.03), fat-free mass (p = 0.005) and total myofibrillar protein (p = 0.005). A trend for larger muscle fiber cross-sectional area in the type II fibers compared to type I fibers was observed following the 12-week resistance training (p = 0.08). No supplement interaction effects were observed. CONCLUSION: Post-exercise ingestion of creatine monohydrate does not provide greater enhancement of body composition and muscle strength compared to resistance training alone in middle to older males

    Contrasting Development of Canopy Structure and Primary Production in Planted and Naturally Regenerated Red Pine Forests

    Get PDF
    Globally, planted forests are rapidly replacing naturally regenerated stands but the implications for canopy structure, carbon (C) storage, and the linkages between the two are unclear. We investigated the successional dynamics, interlinkages and mechanistic relationships between wood net primary production (NPPw) and canopy structure in planted and naturally regenerated red pine (Pinus resinosa Sol. ex Aiton) stands spanning ≥ 45 years of development. We focused our canopy structural analysis on leaf area index (LAI) and a spatially integrative, terrestrial LiDAR-based complexity measure, canopy rugosity, which is positively correlated with NPPw in several naturally regenerated forests, but which has not been investigated in planted stands. We estimated stand NPPw using a dendrochronological approach and examined whether canopy rugosity relates to light absorption and light–use efficiency. We found that canopy rugosity increased similarly with age in planted and naturally regenerated stands, despite differences in other structural features including LAI and stem density. However, the relationship between canopy rugosity and NPPw was negative in planted and not significant in naturally regenerated stands, indicating structural complexity is not a globally positive driver of NPPw. Underlying the negative NPPw-canopy rugosity relationship in planted stands was a corresponding decline in light-use efficiency, which peaked in the youngest, densely stocked stand with high LAI and low structural complexity. Even with significant differences in the developmental trajectories of canopy structure, NPPw, and light use, planted and naturally regenerated stands stored similar amounts of C in wood over a 45-year period. We conclude that widespread increases in planted forests are likely to affect age-related patterns in canopy structure and NPPw, but planted and naturally regenerated forests may function as comparable long-term C sinks via different structural and mechanistic pathways

    Effects of ingesting JavaFit Energy Extreme functional coffee on aerobic and anaerobic fitness markers in recreationally-active coffee consumers

    Get PDF
    The purpose of this study was to examine the effects of ingesting JavaFit™ Energy Extreme (JEE) on aerobic and anaerobic performance measures in recreationally-active male and female coffee drinkers. Five male (27.6 ± 4.2 yrs, 93.2 ± 11.7 kg, 181.6 ± 6.9 cm) and five female (29 ± 4.6 yrs, 61.5 ± 9.2 kg, 167.6 ± 6.9 cm) regular coffee drinkers (i.e., 223.9 ± 62.7 mg·d(-1 )of caffeine) participated in this study. In a cross-over, randomized design, participants performed a baseline (BASELINE) graded treadmill test (GXT) for peak VO(2 )assessment and a Wingate test for peak power. Approximately 3–4 d following BASELINE testing, participants returned to the lab for the first trial and ingested 354 ml of either JEE or decaffeinated coffee (DECAF), after which they performed a GXT and Wingate test. Criterion measures during the GXT included an assessment of peakVO(2 )at maximal exercise, as well as VO(2 )at 3 minutes and 10 minutes post-exercise. Additionally, time-to-exhaustion (TTE), maximal RPE, mean heart rate (HR), mean systolic pressure (SBP), and mean diastolic blood pressure (DBP) were measured during each condition. Criterion measures for the Wingate included mean HR, SBP, DBP, peak power, and time to peak power (TTP). Participants then returned to the lab approximately one week later to perform the second trial under the same conditions as the first, except consuming the remaining coffee. Data were analyzed using a one way ANOVA (p < 0.05). Our results indicate that JEE significantly increased VO(2 )at 3 minutes post-exercise when compared to BASELINE (p = 0.04) and DECAF (p = 0.02) values, which may be beneficial in enhancing post-exercise fat metabolism

    The role of exercise training on lipoprotein profiles in adolescent males

    Get PDF
    BACKGROUND: Major cardiovascular disorders are being recognized earlier in life. In this study we examined the effects of swimming and soccer training on male adolescent lipid-lipoprotein profiles relative to a maturity matched control group to determine the effects of these exercises on specific cardiovascular risk and anti-risk factors. METHODS: Forty five adolescent males (11.81 ± 1.38 yr) including swimmers (SW), soccer players (SO), and non-athlete, physically active individuals as controls (C), participated in this study. Training groups completed 12-wk exercise programs on three non-consecutive days per week. Plasma low-density lipoprotein (LDL), very low density lipoprotein (VLDL), high density lipoprotein (HDL), apolipoprotein A-I (apoA-I), apolipoprotein B (apoB), total cholesterol (TC), and triglyceride (TG) levels were measured in control, pre-training, during-training, and post-training. RESULTS: In response to the 12-wk training period, the SO group demonstrated a decrease in the mean LDL level compared to the SW and C (SW: 0.15%; SO: −9.51%; C: 19.59%; p < 0.001) groups. There was an increase in both the SW and SO groups vs. the control in mean HDL (SW: 5.66%; SO: 3.07%; C: −7.21%; p < 0.05) and apoA-I (SW: 3.86%; SO: 5.48%; C: −1.01%; p < 0.05). ApoB was considerably lower in the training groups vs. control (SW: −9.52%; SO: −13.87%; C: 21.09%; p < 0.05). ApoA-I/apoB ratio was significantly higher in training groups vs. control (SW: 16.74%; SO: 23.71%; C: −17.35%; p < 0.001). There were no significant differences between groups for other factors. CONCLUSIONS: The favorable alterations in LDL, HDL, apoA-I, and apoB observed in the training groups suggest that both regular swimming or soccer exercise can potentially mitigate cardiovascular risk in adolescent males

    Bioactive Properties and Clinical Safety of a Novel Milk Protein Peptide

    Get PDF
    Background: Milk protein fractions and peptides have been shown to have bioactive properties. This preliminary study examined the potential mechanisms of action and clinical safety of novel milk protein peptide ( MP). Findings: A novel MP mixture inhibits the tyrosine kinase activity of epidermal growth factor receptor ( EGFR), vascular endothelial growth factor receptor 2 (VEGFR2), and insulin receptor (IR) with IC(50) of 9.85 mu M, 7.7 mu M, and 6.18 mu M respectively. In vitro, this multi-kinase inhibitor causes apoptosis in HT-29 colon cancer cells, and in a C. elegans worm study, showed a weak but significant increase in lifespan. A six week double-blind, placebo-controlled study involving 73 healthy volunteers demonstrated that the MP mixture is safe to consume orally. All clinical blood markers remained within normal levels and no clinically significant side effects were reported. There was some evidence of improved insulin sensitivity, neutrophil-to-lymphocyte ratio (NLR), and quality of life assessment of role of physical function. Conclusions: These data in combination with the observed in vitro anti-cancer properties warrant further clinical studies to investigate this MP mixture as a potential clinical nutrition intervention for improving the quality of life and clinical outcomes in cancer patients

    Analysis of the efficacy, safety, and regulatory status of novel forms of creatine

    Get PDF
    Creatine has become one of the most popular dietary supplements in the sports nutrition market. The form of creatine that has been most extensively studied and commonly used in dietary supplements is creatine monohydrate (CM). Studies have consistently indicated that CM supplementation increases muscle creatine and phosphocreatine concentrations by approximately 15–40%, enhances anaerobic exercise capacity, and increases training volume leading to greater gains in strength, power, and muscle mass. A number of potential therapeutic benefits have also been suggested in various clinical populations. Studies have indicated that CM is not degraded during normal digestion and that nearly 99% of orally ingested CM is either taken up by muscle or excreted in urine. Further, no medically significant side effects have been reported in literature. Nevertheless, supplement manufacturers have continually introduced newer forms of creatine into the marketplace. These newer forms have been purported to have better physical and chemical properties, bioavailability, efficacy, and/or safety profiles than CM. However, there is little to no evidence that any of the newer forms of creatine are more effective and/or safer than CM whether ingested alone and/or in combination with other nutrients. In addition, whereas the safety, efficacy, and regulatory status of CM is clearly defined in almost all global markets; the safety, efficacy, and regulatory status of other forms of creatine present in today’s marketplace as a dietary or food supplement is less clear

    Effects of Calcium β-HMB Supplementation During Training on Markers of Catabolism, Body Composition, Strength and Sprint Performance

    Get PDF
    Calcium β-hydroxy β-methylbutyrate (HMB) supplementation has been reported to reduce catabolism and promote gains in strength and fat free mass in untrained individuals initiating training. However, the effects of HMB supplementation on strength and body composition alterations during training in athletes is less clear. This study examined the effects of 28-d of calcium HMB supplementation during intense training on markers of catabolism, body composition, strength, and sprint performance. In a double-blind and randomized manner, 28 NCAA division I-A football players were matched-paired and assigned to supplement their diet for 28-d during winter resistance/agility training (~8 hr/wk) with a carbohydrate placebo supplement (P) or the P supplement with 3 g/day of HMB as a calcium salt (HMB). Prior to and following supplementation: dietary records and fasting blood samples were obtained; body composition was determined via DEXA; subjects performed maximal effort bench press, barbell back squat, and power clean isotonic repetition tests; and, subjects performed a repeated cycle ergometer sprint test (12 x 6-s sprints with 30-s rest recovery) to simulate a 12-play drive in football. Results revealed no significant differences between the placebo and HMB supplemented groups in markers of catabolism, muscle/liver enzyme efflux, hematological parameters, body composition, combined lifting volume, or repetitive sprint performance. Results indicate that HMB supplementation (3 g/day) during off-season college football resistance/agility training does not reduce catabolism or provide ergogenic benefit

    Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review

    Get PDF
    Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells through a specific symporter called Na+/Cl--dependent Cr transporter (CRT). Once within cells, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4-]2- and Cr to produce phosphocreatine (PCr) and [Mg2+:ADP3-]-. We aimed to perform a comprehensive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states
    corecore