577 research outputs found

    Particles of Moisture or other Substance Suspended in Air and Visible as Clouds: Complexity in Site-Related Creative Practices

    Get PDF
    Outlining a history, theory and practice of site-related creative practices across poetry, art and architecture, this book chapter works to contextualise the practice-based research of the creative collaborative pair Kreider + O’Leary. Alongside this written component, Kreider + O’Leary engage with an expanded drawing technique to delineate the specific narrative of one of their site-related projects

    Biochemical characterizations of Escherichia coli DnaK and DnaK mutant proteins purified from ndk deficient cells

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Biology, 1999.Includes bibliographical references.by Thomas K. Barthel.Ph.D

    Muscle fiber and performance adaptations to resistance exercise with MyoVive, colostrum or casein and whey supplementationa

    Get PDF
    This is the publisher's version, also found at http://ehis.ebscohost.com/ehost/detail?sid=ba69ee0d-97cf-4a2c-a1a2-2c26fb60d65c%40sessionmgr13&vid=1&hid=2&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=s3h&AN=10725638To determine the effects of 12 weeks of resistance exercise with MyoVive and/or colostrum supplementation, 19 male and female recreationally weighttrained subjects (X ± SE; age = 28.3 ± 6.9 yrs; hgt = 68.2 ± 3.8 cm) were divided into MyoVive + colostrum (n = 4), MyoVive + casein & whey (n = 4), colostrum + casein & whey (n = 6), and casein & whey (n = 5) groups. All groups similarly increased (p < .05) 1 repetition maximum (RM) leg press (kg; pre = 158.6 ± 12.8, post = 189.3 ± 11.3), body mass (kg; pre = 79.0 ± 3.2, post = 80.7 ± 3.8), and lean body mass (kg; pre = 60.1 ± 3.1, post = 62.2 ± 2.8). Increases were observed for peak force (N; all loads), peak velocity (m.s-1; 70% & 40% 1 RM), and peak power (W; 70% & 40% 1 RM) for all groups for the leg press exercise, with no differences between groups. When performance data were adjusted for body mass, lean body mass, lower body lean mass as determined by DEXA, or % change, no group differences were observed. Relative (%) fiber type content, cross-sectional areas (mm2), % fiber type areas, or % myosin heavy chain expression did not change for any group. These data suggest that MyoVive and colostrum supplementation have no greater effect on cellular and performance adaptations when compared to casein and whey protein

    Effects of Calcium Pyruvate Supplementation During Training On Body Composition, Exercise Capacity, and Metabolic Responses To Exercise

    Get PDF
    Objective: We evaluated the effects of calcium pyruvate supplementation during training on body composition and metabolic responses to exercise. Method: Twenty-three untrained females were matched and assigned to ingest in a double blind and randomized manner either 5 g of calcium pyruvate (PYR) or a placebo (PL) twice daily for 30 d while participating in a supervised exercise program. Prior to and following supplementation, subjects had body composition determined via hydrodensiometry; performed a maximal cardiopulmonary exercise test; and performed a 45-min walk test at 70% of pre-training VO2 max in which fasting pre- and post exercise blood samples determined. Results: No significant differences were observed between groups in energy intake or training volume. Univariate repeated measures ANOVA revealed that subjects in the PYR group gained less weight (PL 1.2 ± 0.3, PYR 0.3 ± 0.3 kg, P = 0.04), lost more fat (PL 1.1 ± 0.5; PYR −0.4 ± 0.5 kg, P = 0.03), and tended to lose a greater percentage of body fat (PL 1.0 ± 0.7; PYR −0.65 ± 0.6%, P = 0.07), with no differences observed in fat-free mass (PL 0.1 ± 0.5; PYR 0.7 ± 0.3 kg, P = 0.29). However, these changes were not significant when body composition data were analyzed by MANOVA (P = 0.16). There was some evidence that PYR may negate some of the beneficial effects of exercise on HDL values. No significant differences were observed between groups in maximal exercise responses or metabolic responses to submaximal walking. Conclusions: Results indicate that PYR supplementation during training does not significantly affect body composition or exercise performance and may negatively affect some blood lipid levels

    Analysis of the efficacy, safety, and regulatory status of novel forms of creatine

    Get PDF
    Creatine has become one of the most popular dietary supplements in the sports nutrition market. The form of creatine that has been most extensively studied and commonly used in dietary supplements is creatine monohydrate (CM). Studies have consistently indicated that CM supplementation increases muscle creatine and phosphocreatine concentrations by approximately 15–40%, enhances anaerobic exercise capacity, and increases training volume leading to greater gains in strength, power, and muscle mass. A number of potential therapeutic benefits have also been suggested in various clinical populations. Studies have indicated that CM is not degraded during normal digestion and that nearly 99% of orally ingested CM is either taken up by muscle or excreted in urine. Further, no medically significant side effects have been reported in literature. Nevertheless, supplement manufacturers have continually introduced newer forms of creatine into the marketplace. These newer forms have been purported to have better physical and chemical properties, bioavailability, efficacy, and/or safety profiles than CM. However, there is little to no evidence that any of the newer forms of creatine are more effective and/or safer than CM whether ingested alone and/or in combination with other nutrients. In addition, whereas the safety, efficacy, and regulatory status of CM is clearly defined in almost all global markets; the safety, efficacy, and regulatory status of other forms of creatine present in today’s marketplace as a dietary or food supplement is less clear

    Modeling, Simulation, and Experiments of Coating Growth on Nanofibers

    Get PDF
    This work is a comparison of modeling and simulation results with experiments for an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin film materials using plasma enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with metallic materials under different operating conditions to observe changes in the coating morphology. The modeling effort focuses on linking simple models at the reactor level, nanofiber level and atomic level to form a comprehensive model. The comprehensive model leads to the definition of an evolution equation for the coating free surface around an isolated nanofiber. This evolution equation was previously derived and solved under conditions of a nearly circular coating, with a concentration field that was only radially dependent and that was independent of the location of the coating free surface. These assumptions permitted the development of analytical expressions for the concentration field. The present work does not impose the above-mentioned conditions and considers numerical simulations of the concentration field that couple with level set simulations of the evolution equation for the coating free surface. Further, the cases of coating an isolated fiber as well as a multiple fiber mat are considered. Simulation results are compared with experimental results as the reactor pressure and power, as well as the nanofiber mat porosity, are varied. (C) 2008 American Institute of Physics

    Multiscale Modeling, Simulations, and Experiments of Coating Growth on Nanofibers. Part Ii. Deposition

    Get PDF
    This work is Part II of an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin-film materials using plasma-enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with aluminum materials under different operating conditions to observe changes in the coating morphology. This procedure begins with the sputtering of the coating material from a target. Part I [J. Appl. Phys. 98, 044303 (2005)] focused on the sputtering aspect and transport of the sputtered material through the reactor. That reactor level model determines the concentration field of the coating material. This field serves as input into the present species transport and deposition model for the region surrounding an individual nanofiber. The interrelationships among processing factors for the transport and deposition are investigated here from a detailed modeling approach that includes the salient physical and chemical phenomena. Solution strategies that couple continuum and atomistic models are used. At the continuum scale, transport dynamics near the nanofiber are described. At the atomic level, molecular dynamics (MD) simulations are used to study the deposition and sputtering mechanisms at the coating surface. Ion kinetic energies and fluxes are passed from the continuum sheath model to the MD simulations. These simulations calculate sputtering and sticking probabilities that in turn are used to calculate parameters for the continuum transport model. The continuum transport model leads to the definition of an evolution equation for the coating-free surface. This equation is solved using boundary perturbation and level set methods to determine the coating morphology as a function of operating conditions. (c) 2005 American Institute of Physics
    corecore