141 research outputs found
Studies into cytauxzoon and helminth infections of bobcats (Lynx rufus) of Northwest Arkansas
The purpose of this study was to determine the prevalence of Cytauxzoon felis and gastrointestinal helminth infections in bobcats (Lynx rufus) of Northwest Arkansas, an area known to have numerous cases of cytaux in domestic cats. Sixty bobcat carcasses were collected from trappers located in Mulberry and Decatur, Arkansas. Blood samples from the hearts were used to isolate Cytauxzoon DNA. Next, a polymerase chain reaction ( PCR) procedure coupled with gel-electrophoresis assay for the 18s region of extracted DNA were used to determine the presence of the protozoan in the bobcats at the time of harvest. Out of the 60 bobcats, 54 (90%) were positive for the protozoan’s infection. These findings indicate a large reservoir of Cytauxzoon for possible infection of domestic cats. Along with the detection of Cytauxzoon felis, intestinal helminths of the bobcats were collected and identified. The isolated helminths included Alaria marcianae, Ancylostoma sp., Molineus barbatus, Taenia sp., Spirometra mansonoides, Mesocestoides lineatus, Aonchotheca putorii, Physaloptera praeputialis and Toxocara cati. All helminths found were previously shown to be common in omnivorous and carnivorous sylvatic as well as domestic mammals of the region. It is amazing that bobcats are able to withstand both parasitic infections concurrently, as they roam the forests of Northwest Arkansas
Elastomeric Osteoconductive Synthetic Scaffolds with Acquired Osteoinductivity Expedite the Repair of Critical Femoral Defects in Rats
Regenerative medicine aspires to reduce reliance on or overcome limitations associated with donor tissue-mediated repair. Structural bone allografts are commonly used in orthopedic surgery, with a high percentage of graft failure due to poor tissue integration. This problem is aggravated among elderly, those suffering from metabolic conditions, or those undergoing cancer therapies that compromise graft healing. Toward this end, we developed a synthetic graft named FlexBone, in which nanocrystalline hydroxyapatite (50-wt%) was structurally integrated with crosslinked poly(hydroxyethyl methacrylate) hydrogel, which provides dimensional stability and elasticity. It recapitulates the essential role of nanocrystalline hydroxyapatite in defining the osteoconductivity and biochemical microenvironment of bone because of its affinity for biomolecules. Here, we demonstrate that FlexBone effectively absorbed endogenously secreted signaling molecules associated with the inflammation/graft healing cascade upon being press-fit into a 5-mm rat femoral segmental defect. Further, when preabsorbed with a single dose of 400-ng recombinant human (rh) bone morphogenetic protein-2/7 heterodimer, it enabled the functional repair of the critical-sized defect by 8-12 weeks. FlexBone was stably encapsulated by the bridging bony callus and the FlexBone-callus interface was continuously remodeled. In summary, FlexBone combines the dimensional stability and osteoconductivity of structural bone allografts with desirable surgical compressibility and acquired osteoinductivity in an easy-to-fabricate and scalable synthetic biomaterial.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90480/1/ten-2Etea-2E2010-2E0274.pd
- …